根據相(xiang)(xiang)圖,多(duo)數合(he)(he)金(jin)元素在(zai)(zai)(zai)固(gu)(gu)(gu)(gu)相(xiang)(xiang)中(zhong)的(de)溶(rong)(rong)(rong)解度(du)要低于液(ye)相(xiang)(xiang),因(yin)此在(zai)(zai)(zai)凝固(gu)(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong)溶(rong)(rong)(rong)質(zhi)(zhi)原子不斷(duan)被排出(chu)到(dao)液(ye)相(xiang)(xiang),這(zhe)種固(gu)(gu)(gu)(gu)液(ye)界(jie)面兩側溶(rong)(rong)(rong)質(zhi)(zhi)濃度(du)的(de)差異導(dao)致合(he)(he)金(jin)凝固(gu)(gu)(gu)(gu)后(hou)溶(rong)(rong)(rong)質(zhi)(zhi)元素成(cheng)分(fen)不均勻性,稱(cheng)作(zuo)偏析(xi)(xi)(xi)。溶(rong)(rong)(rong)質(zhi)(zhi)元素分(fen)布(bu)不均勻性發生(sheng)在(zai)(zai)(zai)微(wei)觀(guan)結構(gou)形成(cheng)范圍(wei)內(nei)(有10~100μm的(de)樹狀枝(zhi)晶),此時為微(wei)觀(guan)偏析(xi)(xi)(xi)。溶(rong)(rong)(rong)質(zhi)(zhi)元素通(tong)過(guo)(guo)對(dui)流傳質(zhi)(zhi)等(deng)(deng)質(zhi)(zhi)量傳輸,將導(dao)致大(da)范圍(wei)內(nei)成(cheng)分(fen)不均勻性,即形成(cheng)了(le)宏觀(guan)偏析(xi)(xi)(xi)。宏觀(guan)偏析(xi)(xi)(xi)可以(yi)認為是由凝固(gu)(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong)液(ye)體(ti)和(he)固(gu)(gu)(gu)(gu)體(ti)相(xiang)(xiang)對(dui)運動(dong)和(he)溶(rong)(rong)(rong)質(zhi)(zhi)再(zai)分(fen)配過(guo)(guo)程(cheng)共同導(dao)致的(de)。此外(wai)(wai),在(zai)(zai)(zai)凝固(gu)(gu)(gu)(gu)早期(qi)所形成(cheng)的(de)固(gu)(gu)(gu)(gu)體(ti)相(xiang)(xiang)或(huo)非金(jin)屬夾雜的(de)漂(piao)浮和(he)下沉也會造(zao)成(cheng)宏觀(guan)偏析(xi)(xi)(xi)。一(yi)般(ban)認為在(zai)(zai)(zai)合(he)(he)金(jin)鑄件或(huo)鑄錠(ding)內(nei),從幾(ji)毫米到(dao)幾(ji)厘米甚至幾(ji)米范圍(wei)內(nei)濃度(du)變化為宏觀(guan)偏析(xi)(xi)(xi)。因(yin)為溶(rong)(rong)(rong)質(zhi)(zhi)在(zai)(zai)(zai)固(gu)(gu)(gu)(gu)態中(zhong)的(de)擴散系數很低,而成(cheng)分(fen)不均勻性范圍(wei)又很大(da),所以(yi)在(zai)(zai)(zai)凝固(gu)(gu)(gu)(gu)完成(cheng)后(hou),宏觀(guan)偏析(xi)(xi)(xi)很難通(tong)過(guo)(guo)加工處理(li)來消除(chu),因(yin)此抑制宏觀(guan)偏析(xi)(xi)(xi)的(de)產(chan)生(sheng)主要是對(dui)工藝參(can)數進行優化,如(ru)控制合(he)(he)金(jin)成(cheng)分(fen)、施加外(wai)(wai)力場(磁場等(deng)(deng))、優化鑄錠(ding)幾(ji)何形狀、適(shi)當加大(da)冷卻(que)速率等(deng)(deng)。
宏(hong)觀偏(pian)(pian)(pian)析(xi)(xi)是(shi)(shi)(shi)大范(fan)圍內的(de)(de)(de)(de)(de)(de)成分(fen)不均勻現(xian)象,按其表現(xian)形式可分(fen)為正(zheng)偏(pian)(pian)(pian)析(xi)(xi)、反(fan)(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi)和(he)比(bi)重(zhong)偏(pian)(pian)(pian)析(xi)(xi)等(deng)(deng)。①. 正(zheng)偏(pian)(pian)(pian)析(xi)(xi):對(dui)平衡(heng)分(fen)配系數o<1的(de)(de)(de)(de)(de)(de)合(he)(he)金系鑄(zhu)(zhu)錠先(xian)凝(ning)(ning)固(gu)(gu)的(de)(de)(de)(de)(de)(de)部分(fen),其溶(rong)質(zhi)(zhi)含量低(di)于(yu)后(hou)凝(ning)(ning)固(gu)(gu)的(de)(de)(de)(de)(de)(de)部分(fen)。對(dui)ko>1的(de)(de)(de)(de)(de)(de)合(he)(he)金系則(ze)正(zheng)好相反(fan)(fan)(fan),其偏(pian)(pian)(pian)析(xi)(xi)程度與(yu)凝(ning)(ning)固(gu)(gu)速率、液體對(dui)流(liu)以及溶(rong)質(zhi)(zhi)擴散等(deng)(deng)條件有關(guan)。②. 反(fan)(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi):在(zai)ko<1的(de)(de)(de)(de)(de)(de)合(he)(he)金鑄(zhu)(zhu)錠中,其外層溶(rong)質(zhi)(zhi)元(yuan)素(su)(su)高(gao)于(yu)內部,和(he)正(zheng)偏(pian)(pian)(pian)析(xi)(xi)相反(fan)(fan)(fan),故稱為反(fan)(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi)。③. 比(bi)重(zhong)偏(pian)(pian)(pian)析(xi)(xi):是(shi)(shi)(shi)由合(he)(he)金凝(ning)(ning)固(gu)(gu)時形成的(de)(de)(de)(de)(de)(de)初晶(jing)相和(he)溶(rong)液之(zhi)間的(de)(de)(de)(de)(de)(de)比(bi)重(zhong)顯著差(cha)別引(yin)起的(de)(de)(de)(de)(de)(de)一種宏(hong)觀偏(pian)(pian)(pian)析(xi)(xi),主要存(cun)在(zai)于(yu)共晶(jing)系和(he)偏(pian)(pian)(pian)晶(jing)系合(he)(he)金中。如圖2-49所(suo)示,由于(yu)溶(rong)質(zhi)(zhi)元(yuan)素(su)(su)濃度相對(dui)低(di)的(de)(de)(de)(de)(de)(de)等(deng)(deng)軸(zhou)晶(jing)沉積導致在(zai)鑄(zhu)(zhu)錠的(de)(de)(de)(de)(de)(de)底部出(chu)現(xian)負偏(pian)(pian)(pian)析(xi)(xi);由于(yu)浮力(li)和(he)在(zai)凝(ning)(ning)固(gu)(gu)的(de)(de)(de)(de)(de)(de)最后(hou)階(jie)段收縮所(suo)引(yin)起的(de)(de)(de)(de)(de)(de)晶(jing)間流(liu)動(dong)(dong),在(zai)頂部會出(chu)現(xian)很嚴(yan)重(zhong)的(de)(de)(de)(de)(de)(de)正(zheng)偏(pian)(pian)(pian)析(xi)(xi)(頂部偏(pian)(pian)(pian)析(xi)(xi))。A型偏(pian)(pian)(pian)析(xi)(xi)是(shi)(shi)(shi)溶(rong)質(zhi)(zhi)富(fu)集的(de)(de)(de)(de)(de)(de)等(deng)(deng)軸(zhou)晶(jing)帶(dai)(dai),由溶(rong)質(zhi)(zhi)受浮力(li)作用流(liu)動(dong)(dong)穿過(guo)柱狀晶(jing)區,其方(fang)向與(yu)等(deng)(deng)溫線移動(dong)(dong)速度方(fang)向一致但速率更快所(suo)導致。A型偏(pian)(pian)(pian)析(xi)(xi)形狀與(yu)流(liu)動(dong)(dong)類(lei)型有關(guan)。V型偏(pian)(pian)(pian)析(xi)(xi)位于(yu)鑄(zhu)(zhu)錠中心(xin),源于(yu)中心(xin)形成等(deng)(deng)軸(zhou)晶(jing)區和(he)容易斷裂的(de)(de)(de)(de)(de)(de)連接(jie)疏松的(de)(de)(de)(de)(de)(de)網(wang)狀物的(de)(de)(de)(de)(de)(de)形成,之(zhi)后(hou)裂紋沿切應力(li)面展開(kai)為V型,并且充滿了富(fu)集元(yuan)素(su)(su)的(de)(de)(de)(de)(de)(de)液相。而沿鑄(zhu)(zhu)錠側壁(bi)分(fen)布的(de)(de)(de)(de)(de)(de)帶(dai)(dai)狀偏(pian)(pian)(pian)析(xi)(xi)則(ze)是(shi)(shi)(shi)由凝(ning)(ning)固(gu)(gu)過(guo)程初期的(de)(de)(de)(de)(de)(de)不穩定(ding)傳熱和(he)流(liu)動(dong)(dong)導致的(de)(de)(de)(de)(de)(de)。

對于宏觀(guan)偏析(xi)(xi)的(de)研(yan)究(jiu)主要(yao)有實驗(yan)檢(jian)(jian)測和模(mo)(mo)擬計(ji)(ji)算(suan)(suan)(suan)兩種(zhong)手段(duan)。實驗(yan)檢(jian)(jian)測包括(kuo)硫印檢(jian)(jian)驗(yan)法(fa)(fa)(fa)、原(yuan)位分(fen)析(xi)(xi)法(fa)(fa)(fa)、火(huo)花放電原(yuan)子(zi)發(fa)射光譜法(fa)(fa)(fa)、鉆孔取(qu)樣法(fa)(fa)(fa)以及(ji)化(hua)學(xue)分(fen)析(xi)(xi)法(fa)(fa)(fa)等。模(mo)(mo)擬計(ji)(ji)算(suan)(suan)(suan)是通過(guo)數值求解能量(liang)(liang)、動量(liang)(liang)以及(ji)溶(rong)質傳輸等數學(xue)模(mo)(mo)型(xing),進而(er)探討(tao)元素(su)成分(fen)不(bu)均勻性(xing)的(de)方法(fa)(fa)(fa);進入(ru)20世紀后,人(ren)們對凝固過(guo)程中(zhong)的(de)宏觀(guan)偏析(xi)(xi)現象進行了大量(liang)(liang)系統的(de)研(yan)究(jiu)。Flemings研(yan)究(jiu)表明(ming)鑄錠中(zhong)多(duo)種(zhong)不(bu)同的(de)宏觀(guan)偏析(xi)(xi)都可(ke)由凝固時的(de)傳熱、流(liu)動和傳質過(guo)程來定(ding)量(liang)(liang)描述,從(cong)而(er)為宏觀(guan)偏析(xi)(xi)的(de)定(ding)量(liang)(liang)計(ji)(ji)算(suan)(suan)(suan)提供可(ke)能性(xing),隨著計(ji)(ji)算(suan)(suan)(suan)機計(ji)(ji)算(suan)(suan)(suan)能力迅(xun)猛提升,宏觀(guan)偏析(xi)(xi)的(de)模(mo)(mo)擬計(ji)(ji)算(suan)(suan)(suan)得到了迅(xun)速(su)發(fa)展,主要(yao)分(fen)為多(duo)區域法(fa)(fa)(fa)和連續介質法(fa)(fa)(fa)等。
對于高(gao)氮不銹鋼,改善氮偏析以及消除氣孔等凝固缺陷,優化制備工藝制度,是高氮奧氏體不銹鋼制備技術中亟待解決的難題之一。氮作為重要合金元素之一,其偏析程度對材料強度、韌性、抗蠕變性、耐磨性和耐腐蝕等性能的均勻性至關重要,直接影響材料的服役壽命。與高氮不銹鋼中鉻、錳等其他元素相比,氮的分配系數較小,氮偏析嚴重,易形成氮氣泡,凝固末了殘留在鑄錠中形成氮氣孔等凝固缺陷,甚至導致材料直接報廢,因此氮偏析的控制對高氮不銹鋼制備而言至關重要。不同壓力和不同初始氮含量下21.5Cr5Mn1.5Ni0.25N含氮雙相鋼中氮偏析導致氮氣孔的形貌如圖2-50所示,其中D1、D3和D5分別在0.04MPa、0.1MPa和0.13MPa下完成凝固,不同氮質量分數的D2(0.25%N)、D3(0.26%N)和D4(0.29%N)均在0.1MPa下凝固。

