受鑄(zhu)(zhu)(zhu)錠(ding)(ding)凝固收縮和鑄(zhu)(zhu)(zhu)型(xing)(xing)受熱(re)膨脹的影響,鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)接觸隨之發生變化(hua)(hua),即形成氣(qi)隙,如下(xia)圖所示。當鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)間氣(qi)隙形成以后,鑄(zhu)(zhu)(zhu)錠(ding)(ding)向鑄(zhu)(zhu)(zhu)型(xing)(xing)的傳(chuan)熱(re)方式不只是(shi)簡單的傳(chuan)導傳(chuan)熱(re),同時存在小區(qu)域(yu)的氣(qi)體導熱(re)和輻射傳(chuan)熱(re),導致鑄(zhu)(zhu)(zhu)錠(ding)(ding)-鑄(zhu)(zhu)(zhu)型(xing)(xing)界面(mian)熱(re)阻(1/hz)發生非(fei)線性變化(hua)(hua)。界面(mian)熱(re)量傳(chuan)輸可分(fen)為如下(xia)三個(ge)階段。


  階段1: 在(zai)凝固(gu)(gu)(gu)初期,當(dang)表面溫度略低于鑄(zhu)錠(ding)液(ye)相(xiang)線溫度時,在(zai)鑄(zhu)錠(ding)外(wai)表面會形成一定(ding)厚度的(de)半(ban)固(gu)(gu)(gu)態(tai)殼;此(ci)時,在(zai)液(ye)體(ti)靜壓(ya)(ya)(ya)力(li)和外(wai)界(jie)壓(ya)(ya)(ya)力(li)(如(ru)凝固(gu)(gu)(gu)壓(ya)(ya)(ya)力(li)和大氣壓(ya)(ya)(ya)等)的(de)作(zuo)用(yong)下,鑄(zhu)錠(ding)和鑄(zhu)型界(jie)面處于完全(quan)接觸狀(zhuang)態(tai),如(ru)圖(tu)2-84(a)所示(shi)(shi),因而(er)界(jie)面的(de)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸熱量傳(chuan)輸方式(shi)在(zai)界(jie)面傳(chuan)熱過程中起主導作(zuo)用(yong), 此(ci)界(jie)面宏(hong)觀(guan)平均換熱系數(shu)hz1可表示(shi)(shi)為


   h21=a+b·(P1+P3)  (2-167)


   式中,a和(he)b為(wei)常量;Ph為(wei)液體靜(jing)壓力;Ps為(wei)外界壓力。


   階(jie)段2: 在給(gei)定(ding)外界(jie)壓力(li)(li)和液體(ti)靜壓力(li)(li)條(tiao)件下(xia),半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)的(de)強(qiang)度存在一個臨界(jie)值σm;隨(sui)著凝固(gu)(gu)(gu)過程的(de)進(jin)行(xing),半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)的(de)強(qiang)度不斷增大;當強(qiang)度大于臨界(jie)值時,半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)定(ding)型;隨(sui)后(hou)鑄(zhu)(zhu)錠半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)逐(zhu)漸(jian)與鑄(zhu)(zhu)型分(fen)(fen)離,固(gu)(gu)(gu)固(gu)(gu)(gu)接觸(chu)積逐(zhu)漸(jian)減小,氣(qi)隙(xi)(xi)在界(jie)面(mian)(mian)某些(xie)位(wei)置形成(cheng)且其(qi)尺寸逐(zhu)漸(jian)增大,導(dao)致鑄(zhu)(zhu)錠和鑄(zhu)(zhu)型界(jie)面(mian)(mian)處于半(ban)(ban)(ban)完(wan)全接觸(chu)狀態(tai),如圖2-84(b)所示。在此階(jie)段,氣(qi)隙(xi)(xi)的(de)尺寸主要受由液相(xiang)變固(gu)(gu)(gu)相(xiang)發生(sheng)的(de)凝固(gu)(gu)(gu)收縮影(ying)響。盡(jin)管界(jie)面(mian)(mian)還存在部分(fen)(fen)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸(chu),但界(jie)面(mian)(mian)熱(re)(re)阻隨(sui)著凝固(gu)(gu)(gu)的(de)進(jin)行(xing)不斷增大,由于鑄(zhu)(zhu)錠和鑄(zhu)(zhu)型界(jie)面(mian)(mian)接觸(chu)方式的(de)變化,界(jie)面(mian)(mian)熱(re)(re)量傳(chuan)(chuan)輸主要由固(gu)(gu)(gu)固(gu)(gu)(gu)接觸(chu)傳(chuan)(chuan)熱(re)(re)、輻射換(huan)熱(re)(re)以及氣(qi)相(xiang)導(dao)熱(re)(re)傳(chuan)(chuan)熱(re)(re)三分(fen)(fen)構(gou)成(cheng),其(qi)中,固(gu)(gu)(gu)固(gu)(gu)(gu)接觸(chu)傳(chuan)(chuan)熱(re)(re)仍然占據界(jie)面(mian)(mian)熱(re)(re)量傳(chuan)(chuan)輸的(de)主導(dao)地位(wei)。此階(jie)段界(jie)面(mian)(mian)宏觀平(ping)均換(huan)熱(re)(re)系數hz2可(ke)表示為


84.jpg


 此外,隨著凝(ning)固(gu)的(de)進行,鑄(zhu)錠(ding)和鑄(zhu)型界(jie)面(mian)上固(gu)固(gu)接觸面(mian)積逐漸(jian)減小,因而階段1界(jie)面(mian)宏(hong)觀平均換熱系(xi)數(shu)hz1最(zui)大,階段2界(jie)面(mian)宏(hong)觀平均換熱系(xi)數(shu)hz2值次之,階段3界(jie)面(mian)宏(hong)觀平均換熱系(xi)數(shu)hz3值最(zui)小,這(zhe)與實際凝(ning)固(gu)過程中界(jie)面(mian)換熱系(xi)數(shu)逐漸(jian)減小的(de)規(gui)律相(xiang)互印證。同時,在(zai)鑄(zhu)錠(ding)自(zi)身重力的(de)作用下,在(zai)鑄(zhu)錠(ding)底部位置,界(jie)面(mian)半(ban)完(wan)(wan)全接觸狀態始終貫穿整個(ge)凝(ning)固(gu)過程,這(zhe)與鑄(zhu)錠(ding)頂端(duan)界(jie)面(mian)固(gu)固(gu)接觸完(wan)(wan)全消失(shi)有所不同,如圖2-84(d)所示。


  凝固壓力(li)在(zai)氣隙的(de)(de)(de)形(xing)成過程中扮演了(le)十分(fen)重要(yao)的(de)(de)(de)角色。研究(jiu)表明,增加凝固壓力(li)(兆帕級)具(ju)有明顯的(de)(de)(de)強(qiang)化冷卻效果,但在(zai)界面(mian)熱量傳輸變(bian)化的(de)(de)(de)三個階(jie)段,加壓強(qiang)化冷卻的(de)(de)(de)程度(du)大(da)有不同。


 階段(duan)1:當(dang)壓(ya)力在(zai)幾兆帕下變化(hua)時,由(you)于物性(xing)參數(如(ru)強(qiang)度、密度和(he)(he)導熱系(xi)數等)的變化(hua)量可(ke)(ke)以(yi)忽略(lve)不計,壓(ya)力對(dui)鑄(zhu)錠和(he)(he)鑄(zhu)型界面完全接觸(chu)狀態影(ying)響(xiang)(xiang)較小,根據式(2-166)可(ke)(ke)知,壓(ya)力對(dui)界面宏觀平均換熱系(xi)數的影(ying)響(xiang)(xiang)可(ke)(ke)以(yi)忽略(lve)不計,因此增加(jia)壓(ya)力對(dui)階段(duan)1的界面換熱影(ying)響(xiang)(xiang)很(hen)小。


  階(jie)段2:在此階(jie)段,鑄錠和鑄型界面非完(wan)全接觸狀態主要由(you)凝固收縮控(kong)制。


  隨著壓力的(de)(de)(de)增(zeng)(zeng)加,半固(gu)(gu)態殼抵抗變形(xing)所需臨界(jie)(jie)強(qiang)度增(zeng)(zeng)大,因而加壓能(neng)夠(gou)抑制(zhi)界(jie)(jie)面(mian)(mian)非完全接觸(chu)狀(zhuang)態的(de)(de)(de)形(xing)成(cheng),有(you)助于將界(jie)(jie)面(mian)(mian)在整個凝固(gu)(gu)過(guo)程中實(shi)現保持(chi)固(gu)(gu)固(gu)(gu)接觸(chu)的(de)(de)(de)狀(zhuang)態。例(li)如,隨著壓力的(de)(de)(de)增(zeng)(zeng)加,H13表面(mian)(mian)上(shang)的(de)(de)(de)坑變得淺平,且數(shu)量逐漸減(jian)少,意(yi)味著鑄(zhu)(zhu)錠表面(mian)(mian)越(yue)來越(yue)光滑(hua),粗(cu)糙度減(jian)小(xiao),鑄(zhu)(zhu)錠鑄(zhu)(zhu)型界(jie)(jie)面(mian)(mian)處的(de)(de)(de)固(gu)(gu)固(gu)(gu)接觸(chu)面(mian)(mian)積增(zeng)(zeng)大。根據式(2-168)可知(zhi),界(jie)(jie)面(mian)(mian)宏觀(guan)(guan)平均(jun)傳熱系數(shu)與壓力趨于正比(bi)關(guan)系,加壓能(neng)夠(gou)顯(xian)著提升此階(jie)段界(jie)(jie)面(mian)(mian)宏觀(guan)(guan)平均(jun)換(huan)熱系數(shu)。因此,增(zeng)(zeng)加壓力能(neng)夠(gou)強(qiang)化鑄(zhu)(zhu)錠鑄(zhu)(zhu)型間界(jie)(jie)面(mian)(mian)固(gu)(gu)固(gu)(gu)接觸(chu)狀(zhuang)態,抑制(zhi)由凝固(gu)(gu)收縮導致界(jie)(jie)面(mian)(mian)氣隙的(de)(de)(de)形(xing)成(cheng),加快(kuai)鑄(zhu)(zhu)錠鑄(zhu)(zhu)型界(jie)(jie)面(mian)(mian)傳遞,強(qiang)化冷(leng)卻效果明顯(xian)。


  階段(duan)(duan)3:界面(mian)氣(qi)(qi)隙(xi)(xi)的長(chang)大主要(yao)受控于(yu)固態收(shou)縮。隨(sui)著(zhu)界面(mian)氣(qi)(qi)隙(xi)(xi)尺寸的變(bian)大,外(wai)界逐(zhu)步與(yu)界面(mian)氣(qi)(qi)隙(xi)(xi)連通,在壓力的作用下(xia),氣(qi)(qi)體(ti)(ti)逐(zhu)漸進(jin)入界面(mian)氣(qi)(qi)隙(xi)(xi)內(nei),進(jin)而導(dao)(dao)致界面(mian)氣(qi)(qi)隙(xi)(xi)與(yu)外(wai)界之間的壓差趨于(yu)零,壓力對界面(mian)氣(qi)(qi)隙(xi)(xi)的影響逐(zhu)漸消失。此(ci)階段(duan)(duan),氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)(huan)熱(re)與(yu)輻射換(huan)(huan)熱(re)為界面(mian)換(huan)(huan)熱(re)的主要(yao)方式。其中氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)(huan)熱(re)系數(hc,g)主要(yao)由氣(qi)(qi)隙(xi)(xi)內(nei)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)系數(kgap)和界面(mian)氣(qi)(qi)隙(xi)(xi)尺寸(wgap)決定(ding),作為計算氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)(huan)熱(re)系數的重要(yao)參(can)數,在給定(ding)壓力下(xia)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)系數(kgap)可由下(xia)列公(gong)式進(jin)行計算:


式 170.jpg



  綜上所述,在(zai)通過(guo)氣(qi)體維持壓力(li)的(de)(de)加壓條件下(xia),壓力(li)對界(jie)面(mian)換熱系數的(de)(de)影響(xiang)主要集中(zhong)在(zai)界(jie)面(mian)氣(qi)隙形(xing)(xing)成(cheng)的(de)(de)第二階段,即在(zai)鑄(zhu)錠殼(ke)凝固收縮階段加壓通過(guo)增大鑄(zhu)錠殼(ke)抵抗變形(xing)(xing)所需臨界(jie)強(qiang)度從而改善界(jie)面(mian)換熱,起(qi)到強(qiang)化(hua)冷卻的(de)(de)作(zuo)用。


  以H13在(zai)0.1MPa、1MPa和2MPa壓(ya)力(li)下凝固為例(li),其凝固壓(ya)力(li)通過充入氬氣(qi)獲得。為了(le)分(fen)析加壓(ya)對界(jie)面氣(qi)隙尺寸(cun)和換熱(re)(re)方(fang)式的影響規(gui)律,采用埋設熱(re)(re)電(dian)偶以及(ji)位(wei)(wei)移(yi)(yi)傳(chuan)感(gan)器實驗,同時(shi)測(ce)(ce)量(liang)(liang)凝固過程(cheng)中(zhong)鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)溫(wen)(wen)(wen)度(du)變化(hua)曲(qu)(qu)線(xian)(xian)以及(ji)其位(wei)(wei)移(yi)(yi)變化(hua)曲(qu)(qu)線(xian)(xian),其中(zhong),1#和2#熱(re)(re)電(dian)偶分(fen)別測(ce)(ce)量(liang)(liang)離鑄(zhu)(zhu)錠(ding)外表面10mm和15mm位(wei)(wei)置處鑄(zhu)(zhu)錠(ding)溫(wen)(wen)(wen)度(du)變化(hua)曲(qu)(qu)線(xian)(xian);3#和4#熱(re)(re)電(dian)偶分(fen)別測(ce)(ce)量(liang)(liang)鑄(zhu)(zhu)型(xing)內表面5mm和10mm位(wei)(wei)置處鑄(zhu)(zhu)型(xing)的溫(wen)(wen)(wen)度(du)變化(hua)曲(qu)(qu)線(xian)(xian);位(wei)(wei)移(yi)(yi)傳(chuan)感(gan)器LVDT1和LVDT2的探頭位(wei)(wei)置離鑄(zhu)(zhu)型(xing)內表面徑向距離均為5mm,分(fen)別插入鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)中(zhong)測(ce)(ce)量(liang)(liang)凝固過程(cheng)中(zhong)其位(wei)(wei)移(yi)(yi)變化(hua)曲(qu)(qu)線(xian)(xian)。測(ce)(ce)量(liang)(liang)溫(wen)(wen)(wen)度(du)和位(wei)(wei)移(yi)(yi)變化(hua)曲(qu)(qu)線(xian)(xian)的裝(zhuang)置如圖2-85所示。


85.jpg



  溫(wen)度(du)(du)測量曲(qu)線如圖2-86所示,對于鑄(zhu)錠溫(wen)度(du)(du)測量曲(qu)線,存(cun)在(zai)“陡升”和“振蕩”區(qu)域(yu),這主要由熱(re)電(dian)偶預(yu)熱(re)和澆注引(yin)起鋼液(ye)湍流分別(bie)造成。隨(sui)著凝固(gu)過程的進(jin)行(xing),鑄(zhu)型(xing)溫(wen)度(du)(du)升高,鑄(zhu)錠溫(wen)度(du)(du)不斷降低。


86.jpg


  因鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)表(biao)面(mian)(mian)溫(wen)(wen)(wen)度(du)幾乎難以(yi)通過(guo)實驗進行準確(que)測量(liang),因而可通過(guo)數值計(ji)(ji)算的(de)方式獲得(de),即以(yi)測量(liang)的(de)鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)溫(wen)(wen)(wen)度(du)變化曲線作為輸入量(liang),采用(yong)Beck 非線性求解法(fa),計(ji)(ji)算鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)(Tw,i)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)表(biao)面(mian)(mian)溫(wen)(wen)(wen)度(du)(Twm),由于(yu)鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)表(biao)面(mian)(mian)非鏡面(mian)(mian),有(you)一定(ding)粗(cu)糙度(du),因而計(ji)(ji)算所(suo)得(de)鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)(Tw,i)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)表(biao)面(mian)(mian)溫(wen)(wen)(wen)度(du)(Tw,m)均(jun)(jun)為宏觀平均(jun)(jun)表(biao)面(mian)(mian)溫(wen)(wen)(wen)度(du),計(ji)(ji)算結果如圖2-87所(suo)示。當(dang)壓力一定(ding)時,在鑄(zhu)(zhu)(zhu)錠(ding)(ding)鑄(zhu)(zhu)(zhu)型(xing)(xing)界面(mian)(mian)換(huan)熱以(yi)及鑄(zhu)(zhu)(zhu)型(xing)(xing)外(wai)表(biao)面(mian)(mian)散熱的(de)影(ying)響下,鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)表(biao)面(mian)(mian)溫(wen)(wen)(wen)度(du)(Tw,i)在整個凝固過(guo)程中(zhong)持續降(jiang)低(di),鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)(Tw,m)先增加而后逐漸降(jiang)低(di)。隨(sui)著壓力從0.1MPa增加至(zhi)2MPa,鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)表(biao)面(mian)(mian)降(jiang)溫(wen)(wen)(wen)速率(lv)和鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)升溫(wen)(wen)(wen)速率(lv)明(ming)顯(xian)加快,表(biao)明(ming)加壓對鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)界面(mian)(mian)間換(huan)熱速率(lv)影(ying)響顯(xian)著。


87.jpg


  當壓(ya)力一(yi)定時(shi)(shi)(shi),界面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)(jian)的(de)(de)(de)變化關(guan)系可通過凝(ning)固過程中鑄(zhu)(zhu)錠(ding)(ding)(ding)和(he)鑄(zhu)(zhu)型(xing)(xing)位移變化曲線獲得。基(ji)(ji)于(yu)位移傳(chuan)感(gan)器(qi)的(de)(de)(de)位移測量(liang)結果,所(suo)得界面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)(jian)的(de)(de)(de)變化關(guan)系如圖(tu)2-88(a)所(suo)示(shi),在(zai)0.1MPa、1MPa和(he)2MPa下,界面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)(jian)變化規律基(ji)(ji)本(ben)相似。以(yi)(yi)2MPa為例,在(zai)凝(ning)固初期,鑄(zhu)(zhu)錠(ding)(ding)(ding)、鑄(zhu)(zhu)型(xing)(xing)和(he)位移傳(chuan)感(gan)器(qi)之間(jian)(jian)(jian)存(cun)在(zai)巨大(da)溫(wen)差,使得位移傳(chuan)感(gan)器(qi)附近(jin)的(de)(de)(de)鋼液迅速(su)(su)凝(ning)固,以(yi)(yi)至于(yu)無法(fa)測量(liang)階段2 中凝(ning)固收(shou)縮(suo)(suo)導(dao)致(zhi)的(de)(de)(de)氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du);同(tong)時(shi)(shi)(shi),鑄(zhu)(zhu)錠(ding)(ding)(ding)和(he)鑄(zhu)(zhu)型(xing)(xing)初期溫(wen)差巨大(da),加(jia)速(su)(su)了鑄(zhu)(zhu)型(xing)(xing)升溫(wen)膨(peng)脹和(he)鑄(zhu)(zhu)錠(ding)(ding)(ding)冷卻收(shou)縮(suo)(suo),因(yin)而在(zai)界面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺(chi)(chi)寸(cun)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)(jian)變化曲線前(qian)段不存(cun)氣(qi)(qi)(qi)(qi)隙(xi)尺(chi)(chi)寸(cun)緩慢增長部(bu)(bu)分,取而代之的(de)(de)(de)是氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)(jian)的(de)(de)(de)陡升,而且氣(qi)(qi)(qi)(qi)隙(xi)寬(kuan)(kuan)(kuan)度(du)的(de)(de)(de)陡升很大(da)程度(du)由鑄(zhu)(zhu)錠(ding)(ding)(ding)固態收(shou)縮(suo)(suo)所(suo)致(zhi)。因(yin)此,位移傳(chuan)感(gan)器(qi)所(suo)測氣(qi)(qi)(qi)(qi)隙(xi)尺(chi)(chi)寸(cun)僅包含了固態收(shou)縮(suo)(suo)導(dao)致(zhi)氣(qi)(qi)(qi)(qi)隙(xi)形成(cheng)部(bu)(bu)分,無因(yin)凝(ning)固收(shou)縮(suo)(suo)形成(cheng)氣(qi)(qi)(qi)(qi)隙(xi)部(bu)(bu)分。在(zai)低壓(ya)下,增加(jia)壓(ya)力對(dui)鑄(zhu)(zhu)型(xing)(xing)和(he)鑄(zhu)(zhu)錠(ding)(ding)(ding)的(de)(de)(de)密(mi)度(du)影響很小,幾乎可以(yi)(yi)忽略(lve)不計,所(suo)以(yi)(yi)增加(jia)壓(ya)力對(dui)鑄(zhu)(zhu)型(xing)(xing)固態收(shou)縮(suo)(suo)導(dao)致(zhi)氣(qi)(qi)(qi)(qi)隙(xi)的(de)(de)(de)尺(chi)(chi)寸(cun)影響非常小,所(suo)以(yi)(yi)在(zai)0.1MPa、1MPa和(he)2MPa下,界面(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺(chi)(chi)寸(cun)傳(chuan)感(gan)器(qi)量(liang)的(de)(de)(de)最大(da)值(zhi)幾乎相同(tong),約(yue)為1.27mm。


88.jpg



  根(gen)據氬氣(qi)(qi)導(dao)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)隨壓(ya)(ya)力的變(bian)化(hua)情況[圖(tu)2-89(a)]、凝(ning)(ning)固過(guo)(guo)程(cheng)(cheng)中(zhong)界(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)測量曲(qu)線(xian)(xian)和(he)鑄(zhu)錠外表面(mian)(mian)(mian)以及(ji)鑄(zhu)型內(nei)表溫度的變(bian)化(hua)曲(qu)線(xian)(xian),利用(yong)式(2-171)和(he)式(2-172)可(ke)獲得氣(qi)(qi)隙(xi)形成(cheng)階段(duan)3中(zhong)界(jie)面(mian)(mian)(mian)氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)hc,g和(he)輻射(she)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)hr,以及(ji)換(huan)(huan)(huan)熱(re)(re)(re)方式比例(li)關(guan)系(xi)(xi)(xi),結(jie)果如(ru)圖(tu)2-89(b)所(suo)示(shi)。輻射(she)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)不(bu)受界(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸(cun)的影響,在(zai)(zai)(zai)整個凝(ning)(ning)固過(guo)(guo)程(cheng)(cheng)中(zhong),基本(ben)保持(chi)不(bu)變(bian);相比之下,氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)主要由氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)和(he)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸(cun)共同決(jue)定,與(yu)氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)成(cheng)正(zheng)比,與(yu)界(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸(cun)成(cheng)反比,因而在(zai)(zai)(zai)凝(ning)(ning)固過(guo)(guo)程(cheng)(cheng)中(zhong)氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)變(bian)化(hua)規律(lv)與(yu)界(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸(cun)的變(bian)化(hua)過(guo)(guo)程(cheng)(cheng)截然相反,呈現先(xian)迅速減(jian)小,然后趨(qu)于(yu)(yu)定值。在(zai)(zai)(zai)各個壓(ya)(ya)力條件下,隨著凝(ning)(ning)固的進(jin)行(xing),界(jie)面(mian)(mian)(mian)總換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)(hc,g+h,)迅速減(jian)小,然后趨(qu)于(yu)(yu)穩定,其中(zhong)輻射(she)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)h1在(zai)(zai)(zai)總換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)中(zhong)的占比為60%~80%[120],且在(zai)(zai)(zai)凝(ning)(ning)固中(zhong)后期(qi),0.1MPa、1MPa和(he)2MPa壓(ya)(ya)力下,總界(jie)面(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)(xi)(xi)數(shu)(shu)基本(ben)相等(deng)。由此可(ke)知,低壓(ya)(ya)下,加壓(ya)(ya)對由固態收縮形成(cheng)界(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)的尺(chi)寸(cun)影響幾乎可(ke)以忽略(lve)不(bu)計。


89.jpg

 根據以上討論可知,凝(ning)固結束(shu)后,界(jie)面(mian)(mian)換(huan)熱(re)(re)主(zhu)要通過氣(qi)(qi)(qi)體導熱(re)(re)換(huan)熱(re)(re)和輻(fu)射換(huan)熱(re)(re)兩種方式進行,因加壓(ya)對輻(fu)射換(huan)熱(re)(re)系(xi)(xi)(xi)數的(de)影響(xiang)很小(xiao),那么加壓(ya)主(zhu)要通過改(gai)變界(jie)面(mian)(mian)氣(qi)(qi)(qi)體導熱(re)(re)換(huan)熱(re)(re)系(xi)(xi)(xi)數,從(cong)而起到(dao)強化(hua)冷卻(que)的(de)效果。同時(shi),界(jie)面(mian)(mian)氣(qi)(qi)(qi)體導熱(re)(re)換(huan)熱(re)(re)系(xi)(xi)(xi)數主(zhu)要由(you)氣(qi)(qi)(qi)體導熱(re)(re)系(xi)(xi)(xi)數和界(jie)面(mian)(mian)氣(qi)(qi)(qi)體尺(chi)寸(cun)決定,因壓(ya)力從(cong)0.1MPa增加至2MPa,氬氣(qi)(qi)(qi)導熱(re)(re)系(xi)(xi)(xi)數變化(hua)很小(xiao),進一步(bu)可知壓(ya)力主(zhu)要通過改(gai)變界(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)宏觀平均尺(chi)寸(cun)影響(xiang)界(jie)面(mian)(mian)氣(qi)(qi)(qi)體導熱(re)(re)換(huan)熱(re)(re)系(xi)(xi)(xi)數,進而改(gai)變界(jie)面(mian)(mian)總換(huan)熱(re)(re)系(xi)(xi)(xi)數。此外,壓(ya)力對固態(tai)收縮導致(zhi)的(de)界(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)尺(chi)寸(cun)影響(xiang)幾乎可以忽略不計,那么壓(ya)力主(zhu)要通過改(gai)變由(you)凝(ning)固收縮導致(zhi)界(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)的(de)尺(chi)寸(cun),從(cong)而影響(xiang)界(jie)面(mian)(mian)換(huan)熱(re)(re)。為了評(ping)估壓(ya)力對凝(ning)固收縮導致(zhi)界(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)形(xing)成的(de)影響(xiang),利用界(jie)面(mian)(mian)換(huan)熱(re)(re)系(xi)(xi)(xi)數對界(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)宏觀平均尺(chi)寸(cun)(wm)進行計算,計算公(gong)式如(ru)下:


  式中(zhong),hz3為(wei)宏(hong)觀界面(mian)(mian)換熱系數(shu),通過將測溫數(shu)據(ju)作(zuo)為(wei)輸(shu)入(ru)量,利(li)用(yong)Beck 非線性(xing)求解法(fa)獲(huo)得,計算(suan)流程(cheng)如(ru)圖2-78所示。在(zai)整個(ge)凝固(gu)過程(cheng)中(zhong),界面(mian)(mian)氣(qi)(qi)隙宏(hong)觀平均尺寸(cun)(wm)明顯小于因固(gu)態收縮導致(zhi)(zhi)的(de)界面(mian)(mian)氣(qi)(qi)隙尺寸(cun)(wgap),同時,兩者差值(wgap-wm)隨(sui)著壓(ya)(ya)力(li)的(de)增(zeng)加而(er)增(zeng)大(圖2-90).這(zhe)(zhe)表明在(zai)鑄(zhu)錠(ding)和(he)鑄(zhu)型間(jian)存在(zai)一(yi)定的(de)固(gu)-固(gu)接觸區(qu)或微間(jian)隙區(qu)。這(zhe)(zhe)些區(qu)域(yu)的(de)面(mian)(mian)積隨(sui)著壓(ya)(ya)力(li)的(de)增(zeng)大而(er)增(zeng)大,從而(er)導致(zhi)(zhi)傳(chuan)導換熱的(de)增(zeng)加,這(zhe)(zhe)與鑄(zhu)錠(ding)表面(mian)(mian)粗糙度的(de)實(shi)驗結(jie)果符(fu)合,也進一(yi)步說(shuo)明了(le)加壓(ya)(ya)對界面(mian)(mian)氣(qi)(qi)隙尺寸(cun)的(de)影響主要集中(zhong)在(zai)凝固(gu)收縮階段(duan)。


90.jpg


  因此(ci),加(jia)壓主要通過抑制由凝(ning)固收(shou)縮導致的(de)氣(qi)隙(xi)(xi)形成(cheng),增大(da)固固接(jie)觸或微氣(qi)隙(xi)(xi)的(de)界面(mian)(mian)面(mian)(mian)積,強(qiang)化鑄(zhu)錠和鑄(zhu)型界面(mian)(mian)完全接(jie)觸狀(zhuang)態(tai),從而增加(jia)界面(mian)(mian)氣(qi)體導熱換熱系(xi)(xi)數(shu);此(ci)外,加(jia)壓下,界面(mian)(mian)換熱系(xi)(xi)數(shu)的(de)增加(jia),加(jia)快了鑄(zhu)錠固態(tai)收(shou)縮,導致凝(ning)固初期(qi)由固態(tai)收(shou)縮引起的(de)氣(qi)隙(xi)(xi)的(de)尺寸(cun)快速(su)增大(da)。





聯系方式.jpg