受(shou)鑄(zhu)錠(ding)凝固收(shou)縮和鑄(zhu)型(xing)受(shou)熱(re)膨(peng)脹的(de)(de)影響,鑄(zhu)錠(ding)和鑄(zhu)型(xing)接觸隨之(zhi)發生變化,即形(xing)成氣隙,如下(xia)圖所示(shi)。當鑄(zhu)錠(ding)和鑄(zhu)型(xing)間(jian)氣隙形(xing)成以后,鑄(zhu)錠(ding)向鑄(zhu)型(xing)的(de)(de)傳熱(re)方(fang)式不只是簡單的(de)(de)傳導(dao)傳熱(re),同時存(cun)在小區域的(de)(de)氣體導(dao)熱(re)和輻射傳熱(re),導(dao)致鑄(zhu)錠(ding)-鑄(zhu)型(xing)界面熱(re)阻(1/hz)發生非線性變化。界面熱(re)量傳輸(shu)可(ke)分為如下(xia)三(san)個(ge)階段。


  階段1: 在(zai)(zai)凝固(gu)初期,當表(biao)面(mian)溫(wen)度略低于鑄(zhu)錠(ding)(ding)液相線(xian)溫(wen)度時(shi),在(zai)(zai)鑄(zhu)錠(ding)(ding)外表(biao)面(mian)會形成一定厚度的(de)半(ban)固(gu)態(tai)(tai)殼;此時(shi),在(zai)(zai)液體靜壓(ya)(ya)力(li)和(he)(he)外界壓(ya)(ya)力(li)(如凝固(gu)壓(ya)(ya)力(li)和(he)(he)大氣壓(ya)(ya)等)的(de)作(zuo)用下,鑄(zhu)錠(ding)(ding)和(he)(he)鑄(zhu)型界面(mian)處于完全接(jie)(jie)觸狀態(tai)(tai),如圖2-84(a)所示(shi),因(yin)而界面(mian)的(de)固(gu)固(gu)接(jie)(jie)觸熱(re)(re)量傳(chuan)輸方式在(zai)(zai)界面(mian)傳(chuan)熱(re)(re)過程中(zhong)起主導作(zuo)用, 此界面(mian)宏(hong)觀平均換熱(re)(re)系數(shu)hz1可(ke)表(biao)示(shi)為


   h21=a+b·(P1+P3)  (2-167)


   式中,a和b為(wei)(wei)常量(liang);Ph為(wei)(wei)液(ye)體靜壓力;Ps為(wei)(wei)外界壓力。


   階(jie)段(duan)(duan)(duan)2: 在給定外界壓(ya)力(li)和液體靜壓(ya)力(li)條(tiao)件下,半(ban)固(gu)(gu)態(tai)殼的強度存在一個臨(lin)界值σm;隨著凝固(gu)(gu)過程的進(jin)行,半(ban)固(gu)(gu)態(tai)殼的強度不(bu)斷增大;當強度大于臨(lin)界值時,半(ban)固(gu)(gu)態(tai)殼定型;隨后鑄錠(ding)半(ban)固(gu)(gu)態(tai)殼逐(zhu)漸(jian)與鑄型分(fen)離(li),固(gu)(gu)固(gu)(gu)接(jie)(jie)(jie)(jie)觸(chu)(chu)積逐(zhu)漸(jian)減(jian)小,氣隙在界面某些位置(zhi)形(xing)成且其尺(chi)寸逐(zhu)漸(jian)增大,導致(zhi)鑄錠(ding)和鑄型界面處于半(ban)完(wan)全接(jie)(jie)(jie)(jie)觸(chu)(chu)狀態(tai),如圖2-84(b)所示。在此階(jie)段(duan)(duan)(duan),氣隙的尺(chi)寸主(zhu)要(yao)受由(you)液相(xiang)變固(gu)(gu)相(xiang)發生的凝固(gu)(gu)收縮影響。盡管界面還存在部分(fen)固(gu)(gu)固(gu)(gu)接(jie)(jie)(jie)(jie)觸(chu)(chu),但界面熱(re)(re)阻(zu)隨著凝固(gu)(gu)的進(jin)行不(bu)斷增大,由(you)于鑄錠(ding)和鑄型界面接(jie)(jie)(jie)(jie)觸(chu)(chu)方式的變化(hua),界面熱(re)(re)量傳(chuan)輸(shu)主(zhu)要(yao)由(you)固(gu)(gu)固(gu)(gu)接(jie)(jie)(jie)(jie)觸(chu)(chu)傳(chuan)熱(re)(re)、輻射換熱(re)(re)以及氣相(xiang)導熱(re)(re)傳(chuan)熱(re)(re)三分(fen)構成,其中(zhong),固(gu)(gu)固(gu)(gu)接(jie)(jie)(jie)(jie)觸(chu)(chu)傳(chuan)熱(re)(re)仍然占據界面熱(re)(re)量傳(chuan)輸(shu)的主(zhu)導地位。此階(jie)段(duan)(duan)(duan)界面宏觀(guan)平均換熱(re)(re)系(xi)數(shu)hz2可表示為


84.jpg


 此外(wai),隨著凝(ning)固(gu)(gu)的(de)(de)進行,鑄(zhu)錠和鑄(zhu)型(xing)界(jie)面(mian)(mian)上固(gu)(gu)固(gu)(gu)接觸(chu)面(mian)(mian)積逐漸減(jian)小(xiao),因而(er)階段(duan)1界(jie)面(mian)(mian)宏(hong)觀平(ping)均換熱系(xi)(xi)數(shu)hz1最(zui)大,階段(duan)2界(jie)面(mian)(mian)宏(hong)觀平(ping)均換熱系(xi)(xi)數(shu)hz2值次之,階段(duan)3界(jie)面(mian)(mian)宏(hong)觀平(ping)均換熱系(xi)(xi)數(shu)hz3值最(zui)小(xiao),這與實(shi)際凝(ning)固(gu)(gu)過(guo)程(cheng)(cheng)中界(jie)面(mian)(mian)換熱系(xi)(xi)數(shu)逐漸減(jian)小(xiao)的(de)(de)規律相(xiang)互印證(zheng)。同(tong)時,在(zai)鑄(zhu)錠自(zi)身重(zhong)力的(de)(de)作用下(xia),在(zai)鑄(zhu)錠底部位置,界(jie)面(mian)(mian)半完(wan)全(quan)接觸(chu)狀(zhuang)態始終貫穿(chuan)整個凝(ning)固(gu)(gu)過(guo)程(cheng)(cheng),這與鑄(zhu)錠頂端界(jie)面(mian)(mian)固(gu)(gu)固(gu)(gu)接觸(chu)完(wan)全(quan)消失有所不(bu)同(tong),如(ru)圖2-84(d)所示。


  凝(ning)固壓(ya)(ya)力在氣(qi)隙的形成過程中扮演(yan)了十分重要(yao)的角(jiao)色。研究表明,增加凝(ning)固壓(ya)(ya)力(兆帕級)具(ju)有(you)明顯的強(qiang)化冷(leng)卻效果,但在界面(mian)熱(re)量(liang)傳(chuan)輸變化的三個階(jie)段,加壓(ya)(ya)強(qiang)化冷(leng)卻的程度大有(you)不(bu)同。


 階(jie)段(duan)1:當壓(ya)力(li)在幾兆(zhao)帕(pa)下(xia)變(bian)化(hua)時,由于(yu)物(wu)性(xing)參數(如強度(du)、密度(du)和(he)導熱系數等)的變(bian)化(hua)量可以忽略(lve)不(bu)計,壓(ya)力(li)對鑄(zhu)錠和(he)鑄(zhu)型(xing)界(jie)面(mian)完(wan)全(quan)接觸狀態(tai)影響(xiang)較小,根據式(2-166)可知,壓(ya)力(li)對界(jie)面(mian)宏觀(guan)平均換熱系數的影響(xiang)可以忽略(lve)不(bu)計,因此增加壓(ya)力(li)對階(jie)段(duan)1的界(jie)面(mian)換熱影響(xiang)很小。


  階段2:在此階段,鑄錠(ding)和鑄型界面(mian)非完全接觸(chu)狀態主要由凝固收縮(suo)控制。


  隨著(zhu)壓力(li)的(de)增(zeng)(zeng)(zeng)加(jia)(jia),半固(gu)態殼抵抗變形所需臨界(jie)強度增(zeng)(zeng)(zeng)大,因而加(jia)(jia)壓能(neng)(neng)夠抑(yi)(yi)制界(jie)面非(fei)完全接觸狀(zhuang)態的(de)形成(cheng),有助于將(jiang)界(jie)面在整(zheng)個(ge)凝固(gu)過(guo)程中實現保持固(gu)固(gu)接觸的(de)狀(zhuang)態。例如,隨著(zhu)壓力(li)的(de)增(zeng)(zeng)(zeng)加(jia)(jia),H13表面上(shang)的(de)坑(keng)變得淺(qian)平(ping),且(qie)數(shu)(shu)量(liang)逐漸減(jian)少,意味著(zhu)鑄(zhu)(zhu)(zhu)錠(ding)表面越來越光滑,粗糙度減(jian)小,鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型(xing)界(jie)面處(chu)的(de)固(gu)固(gu)接觸面積增(zeng)(zeng)(zeng)大。根(gen)據(ju)式(2-168)可知,界(jie)面宏觀平(ping)均傳(chuan)熱系(xi)數(shu)(shu)與(yu)壓力(li)趨(qu)于正比關系(xi),加(jia)(jia)壓能(neng)(neng)夠顯著(zhu)提(ti)升此階段界(jie)面宏觀平(ping)均換熱系(xi)數(shu)(shu)。因此,增(zeng)(zeng)(zeng)加(jia)(jia)壓力(li)能(neng)(neng)夠強化鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型(xing)間界(jie)面固(gu)固(gu)接觸狀(zhuang)態,抑(yi)(yi)制由凝固(gu)收縮導致界(jie)面氣隙的(de)形成(cheng),加(jia)(jia)快鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型(xing)界(jie)面傳(chuan)遞,強化冷卻效果明顯。


  階(jie)段(duan)3:界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)的長(chang)大主(zhu)要受控于固態收縮。隨(sui)著界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸的變(bian)大,外界(jie)逐(zhu)步與界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)連通,在壓力(li)的作用(yong)下(xia),氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)逐(zhu)漸(jian)進入界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)內,進而導(dao)(dao)致界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)與外界(jie)之間的壓差趨于零,壓力(li)對界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)的影(ying)響(xiang)逐(zhu)漸(jian)消失。此階(jie)段(duan),氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)導(dao)(dao)熱(re)(re)換(huan)熱(re)(re)與輻射換(huan)熱(re)(re)為界(jie)面(mian)換(huan)熱(re)(re)的主(zhu)要方式。其中氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)導(dao)(dao)熱(re)(re)換(huan)熱(re)(re)系數(shu)(hc,g)主(zhu)要由(you)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)內氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)導(dao)(dao)熱(re)(re)系數(shu)(kgap)和界(jie)面(mian)氣(qi)(qi)(qi)(qi)(qi)隙(xi)(xi)尺(chi)寸(wgap)決定(ding),作為計算氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)導(dao)(dao)熱(re)(re)換(huan)熱(re)(re)系數(shu)的重要參數(shu),在給(gei)定(ding)壓力(li)下(xia)氣(qi)(qi)(qi)(qi)(qi)體(ti)(ti)(ti)導(dao)(dao)熱(re)(re)系數(shu)(kgap)可由(you)下(xia)列公式進行計算:


式 170.jpg



  綜上所(suo)述,在(zai)通過氣體維持壓(ya)力的(de)加(jia)壓(ya)條件下(xia),壓(ya)力對界面(mian)換熱系數的(de)影響主(zhu)要集中在(zai)界面(mian)氣隙(xi)形成的(de)第二(er)階(jie)段(duan),即在(zai)鑄錠殼凝固收縮(suo)階(jie)段(duan)加(jia)壓(ya)通過增(zeng)大(da)鑄錠殼抵抗變形所(suo)需臨界強度從而改善界面(mian)換熱,起(qi)到強化(hua)冷卻(que)的(de)作用。


  以H13在0.1MPa、1MPa和2MPa壓(ya)力下凝固(gu)為(wei)例(li),其(qi)凝固(gu)壓(ya)力通過(guo)充入(ru)氬氣獲得。為(wei)了分析加壓(ya)對(dui)界(jie)面(mian)氣隙尺(chi)寸和換熱方式的(de)(de)影響規(gui)律,采用(yong)埋設熱電偶(ou)(ou)以及位(wei)移(yi)(yi)傳感器實驗,同時測量凝固(gu)過(guo)程中(zhong)鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)溫(wen)度(du)變(bian)化(hua)曲線(xian)以及其(qi)位(wei)移(yi)(yi)變(bian)化(hua)曲線(xian),其(qi)中(zhong),1#和2#熱電偶(ou)(ou)分別(bie)測量離鑄(zhu)(zhu)錠(ding)外表面(mian)10mm和15mm位(wei)置處鑄(zhu)(zhu)錠(ding)溫(wen)度(du)變(bian)化(hua)曲線(xian);3#和4#熱電偶(ou)(ou)分別(bie)測量鑄(zhu)(zhu)型(xing)內(nei)表面(mian)5mm和10mm位(wei)置處鑄(zhu)(zhu)型(xing)的(de)(de)溫(wen)度(du)變(bian)化(hua)曲線(xian);位(wei)移(yi)(yi)傳感器LVDT1和LVDT2的(de)(de)探頭位(wei)置離鑄(zhu)(zhu)型(xing)內(nei)表面(mian)徑向距離均為(wei)5mm,分別(bie)插入(ru)鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)中(zhong)測量凝固(gu)過(guo)程中(zhong)其(qi)位(wei)移(yi)(yi)變(bian)化(hua)曲線(xian)。測量溫(wen)度(du)和位(wei)移(yi)(yi)變(bian)化(hua)曲線(xian)的(de)(de)裝(zhuang)置如圖2-85所示。


85.jpg



  溫(wen)度(du)(du)測(ce)量(liang)曲(qu)(qu)線如圖2-86所(suo)示(shi),對于鑄錠(ding)溫(wen)度(du)(du)測(ce)量(liang)曲(qu)(qu)線,存在“陡升”和“振(zhen)蕩”區域,這主要由(you)熱(re)電偶(ou)預熱(re)和澆注引起(qi)鋼液(ye)湍流分別造(zao)成。隨著凝固過程(cheng)的進行,鑄型溫(wen)度(du)(du)升高,鑄錠(ding)溫(wen)度(du)(du)不斷(duan)降低。


86.jpg


  因(yin)鑄(zhu)(zhu)型(xing)內表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)和(he)鑄(zhu)(zhu)錠(ding)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)度(du)(du)(du)幾乎難以(yi)通(tong)過實驗進行準確測量(liang),因(yin)而(er)可通(tong)過數值計算(suan)的方式獲得,即(ji)以(yi)測量(liang)的鑄(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)型(xing)溫(wen)(wen)度(du)(du)(du)變化曲線(xian)作為輸入量(liang),采用Beck 非(fei)線(xian)性(xing)求解法,計算(suan)鑄(zhu)(zhu)型(xing)內表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)錠(ding)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)度(du)(du)(du)(Twm),由于鑄(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)型(xing)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)非(fei)鏡面(mian)(mian)(mian)(mian)(mian),有一定粗(cu)糙度(du)(du)(du),因(yin)而(er)計算(suan)所(suo)得鑄(zhu)(zhu)型(xing)內表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)錠(ding)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)度(du)(du)(du)(Tw,m)均為宏觀平均表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)度(du)(du)(du),計算(suan)結果如圖2-87所(suo)示(shi)。當(dang)壓力(li)一定時,在(zai)鑄(zhu)(zhu)錠(ding)鑄(zhu)(zhu)型(xing)界面(mian)(mian)(mian)(mian)(mian)換(huan)熱(re)以(yi)及(ji)鑄(zhu)(zhu)型(xing)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)散(san)熱(re)的影響下,鑄(zhu)(zhu)錠(ding)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)度(du)(du)(du)(Tw,i)在(zai)整個(ge)凝(ning)固過程中持續(xu)降(jiang)低,鑄(zhu)(zhu)型(xing)內表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(Tw,m)先(xian)增加(jia)而(er)后逐(zhu)漸降(jiang)低。隨著壓力(li)從0.1MPa增加(jia)至2MPa,鑄(zhu)(zhu)錠(ding)外(wai)(wai)表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)降(jiang)溫(wen)(wen)速(su)率(lv)和(he)鑄(zhu)(zhu)型(xing)內表(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(mian)升溫(wen)(wen)速(su)率(lv)明顯加(jia)快,表(biao)(biao)(biao)(biao)(biao)明加(jia)壓對鑄(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)型(xing)界面(mian)(mian)(mian)(mian)(mian)間換(huan)熱(re)速(su)率(lv)影響顯著。


87.jpg


  當壓力一定(ding)時(shi)(shi),界(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du)隨(sui)時(shi)(shi)間的(de)變化(hua)(hua)關系可通(tong)過(guo)凝固(gu)過(guo)程中鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型位(wei)(wei)(wei)移(yi)變化(hua)(hua)曲(qu)線獲得。基(ji)于位(wei)(wei)(wei)移(yi)傳感(gan)(gan)器(qi)(qi)的(de)位(wei)(wei)(wei)移(yi)測量(liang)結果,所(suo)得界(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du)隨(sui)時(shi)(shi)間的(de)變化(hua)(hua)關系如圖2-88(a)所(suo)示,在(zai)0.1MPa、1MPa和2MPa下(xia),界(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du)隨(sui)時(shi)(shi)間變化(hua)(hua)規律基(ji)本相似(si)。以(yi)(yi)2MPa為(wei)例,在(zai)凝固(gu)初期,鑄(zhu)(zhu)錠(ding)、鑄(zhu)(zhu)型和位(wei)(wei)(wei)移(yi)傳感(gan)(gan)器(qi)(qi)之間存在(zai)巨(ju)大(da)溫差(cha),使得位(wei)(wei)(wei)移(yi)傳感(gan)(gan)器(qi)(qi)附近的(de)鋼液迅速凝固(gu),以(yi)(yi)至(zhi)于無(wu)法測量(liang)階段(duan)(duan)2 中凝固(gu)收縮(suo)導致(zhi)(zhi)的(de)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du);同(tong)時(shi)(shi),鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型初期溫差(cha)巨(ju)大(da),加(jia)速了鑄(zhu)(zhu)型升(sheng)溫膨脹(zhang)和鑄(zhu)(zhu)錠(ding)冷卻收縮(suo),因而在(zai)界(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)(cun)隨(sui)時(shi)(shi)間變化(hua)(hua)曲(qu)線前段(duan)(duan)不(bu)存氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)(cun)緩慢增(zeng)長部(bu)分,取而代之的(de)是氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du)隨(sui)時(shi)(shi)間的(de)陡升(sheng),而且氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬度(du)的(de)陡升(sheng)很(hen)(hen)大(da)程度(du)由鑄(zhu)(zhu)錠(ding)固(gu)態收縮(suo)所(suo)致(zhi)(zhi)。因此,位(wei)(wei)(wei)移(yi)傳感(gan)(gan)器(qi)(qi)所(suo)測氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)(cun)僅包含(han)了固(gu)態收縮(suo)導致(zhi)(zhi)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)形成(cheng)部(bu)分,無(wu)因凝固(gu)收縮(suo)形成(cheng)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)部(bu)分。在(zai)低壓下(xia),增(zeng)加(jia)壓力對鑄(zhu)(zhu)型和鑄(zhu)(zhu)錠(ding)的(de)密度(du)影響很(hen)(hen)小,幾(ji)乎可以(yi)(yi)忽略不(bu)計,所(suo)以(yi)(yi)增(zeng)加(jia)壓力對鑄(zhu)(zhu)型固(gu)態收縮(suo)導致(zhi)(zhi)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)的(de)尺(chi)寸(cun)(cun)影響非常小,所(suo)以(yi)(yi)在(zai)0.1MPa、1MPa和2MPa下(xia),界(jie)(jie)面氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)(cun)傳感(gan)(gan)器(qi)(qi)量(liang)的(de)最大(da)值幾(ji)乎相同(tong),約為(wei)1.27mm。


88.jpg



  根據氬氣(qi)(qi)(qi)導(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)隨壓(ya)力的變化情(qing)況[圖2-89(a)]、凝(ning)(ning)固(gu)過(guo)(guo)程中(zhong)界(jie)面(mian)氣(qi)(qi)(qi)隙測量曲線和鑄(zhu)錠外表(biao)面(mian)以(yi)及鑄(zhu)型(xing)內表(biao)溫度的變化曲線,利(li)用(yong)式(2-171)和式(2-172)可獲(huo)得氣(qi)(qi)(qi)隙形(xing)成階段3中(zhong)界(jie)面(mian)氣(qi)(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)hc,g和輻射(she)(she)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)hr,以(yi)及換(huan)熱(re)(re)(re)方(fang)式比(bi)(bi)例關(guan)系(xi)(xi),結果(guo)如圖2-89(b)所(suo)示(shi)。輻射(she)(she)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)不受界(jie)面(mian)氣(qi)(qi)(qi)隙尺(chi)寸(cun)的影響,在(zai)整個凝(ning)(ning)固(gu)過(guo)(guo)程中(zhong),基(ji)本保(bao)持不變;相(xiang)比(bi)(bi)之(zhi)下(xia),氣(qi)(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)主要由氣(qi)(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)和面(mian)氣(qi)(qi)(qi)隙尺(chi)寸(cun)共同決定,與氣(qi)(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)成正(zheng)比(bi)(bi),與界(jie)面(mian)氣(qi)(qi)(qi)隙尺(chi)寸(cun)成反(fan)比(bi)(bi),因而在(zai)凝(ning)(ning)固(gu)過(guo)(guo)程中(zhong)氣(qi)(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)變化規律與界(jie)面(mian)氣(qi)(qi)(qi)隙尺(chi)寸(cun)的變化過(guo)(guo)程截然相(xiang)反(fan),呈現先迅(xun)速(su)(su)減(jian)小,然后趨(qu)于定值。在(zai)各個壓(ya)力條件下(xia),隨著凝(ning)(ning)固(gu)的進行,界(jie)面(mian)總(zong)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)(hc,g+h,)迅(xun)速(su)(su)減(jian)小,然后趨(qu)于穩定,其中(zhong)輻射(she)(she)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)h1在(zai)總(zong)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)中(zhong)的占比(bi)(bi)為60%~80%[120],且在(zai)凝(ning)(ning)固(gu)中(zhong)后期,0.1MPa、1MPa和2MPa壓(ya)力下(xia),總(zong)界(jie)面(mian)換(huan)熱(re)(re)(re)系(xi)(xi)數(shu)(shu)基(ji)本相(xiang)等。由此可知,低(di)壓(ya)下(xia),加(jia)壓(ya)對由固(gu)態收縮(suo)形(xing)成界(jie)面(mian)氣(qi)(qi)(qi)隙的尺(chi)寸(cun)影響幾乎可以(yi)忽(hu)略不計。


89.jpg

 根據以上討論可知,凝(ning)(ning)固(gu)(gu)結束后,界面(mian)(mian)(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)主(zhu)要(yao)通過(guo)(guo)(guo)氣(qi)(qi)(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換熱(re)(re)(re)(re)和輻射換熱(re)(re)(re)(re)兩種(zhong)方式(shi)進(jin)行,因加壓對(dui)輻射換熱(re)(re)(re)(re)系數(shu)(shu)(shu)的(de)(de)影(ying)(ying)(ying)響(xiang)很(hen)小,那(nei)么加壓主(zhu)要(yao)通過(guo)(guo)(guo)改變(bian)(bian)(bian)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換熱(re)(re)(re)(re)系數(shu)(shu)(shu),從(cong)而(er)起(qi)到強化(hua)(hua)冷卻的(de)(de)效果。同時,界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換熱(re)(re)(re)(re)系數(shu)(shu)(shu)主(zhu)要(yao)由氣(qi)(qi)(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)系數(shu)(shu)(shu)和界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)體(ti)尺(chi)寸(cun)(cun)決定,因壓力從(cong)0.1MPa增加至(zhi)2MPa,氬氣(qi)(qi)(qi)(qi)導(dao)(dao)熱(re)(re)(re)(re)系數(shu)(shu)(shu)變(bian)(bian)(bian)化(hua)(hua)很(hen)小,進(jin)一步可知壓力主(zhu)要(yao)通過(guo)(guo)(guo)改變(bian)(bian)(bian)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)宏(hong)觀平均尺(chi)寸(cun)(cun)影(ying)(ying)(ying)響(xiang)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)(re)(re)換熱(re)(re)(re)(re)系數(shu)(shu)(shu),進(jin)而(er)改變(bian)(bian)(bian)界面(mian)(mian)(mian)(mian)(mian)(mian)總(zong)換熱(re)(re)(re)(re)系數(shu)(shu)(shu)。此外,壓力對(dui)固(gu)(gu)態收縮導(dao)(dao)致(zhi)的(de)(de)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)(cun)影(ying)(ying)(ying)響(xiang)幾乎可以忽(hu)略(lve)不計,那(nei)么壓力主(zhu)要(yao)通過(guo)(guo)(guo)改變(bian)(bian)(bian)由凝(ning)(ning)固(gu)(gu)收縮導(dao)(dao)致(zhi)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)(de)尺(chi)寸(cun)(cun),從(cong)而(er)影(ying)(ying)(ying)響(xiang)界面(mian)(mian)(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)。為了(le)評估壓力對(dui)凝(ning)(ning)固(gu)(gu)收縮導(dao)(dao)致(zhi)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)形成的(de)(de)影(ying)(ying)(ying)響(xiang),利用(yong)界面(mian)(mian)(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)系數(shu)(shu)(shu)對(dui)界面(mian)(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)宏(hong)觀平均尺(chi)寸(cun)(cun)(wm)進(jin)行計算(suan),計算(suan)公式(shi)如下:


  式中,hz3為宏觀界面換熱系(xi)數(shu),通過將測溫數(shu)據作(zuo)為輸(shu)入量(liang),利用Beck 非線(xian)性求解法(fa)獲(huo)得,計(ji)算流程如(ru)圖2-78所示。在整個(ge)凝(ning)固(gu)(gu)(gu)過程中,界面氣(qi)(qi)隙(xi)宏觀平均尺寸(wm)明(ming)顯小于因固(gu)(gu)(gu)態收縮(suo)導(dao)致的(de)界面氣(qi)(qi)隙(xi)尺寸(wgap),同(tong)時,兩者差值(wgap-wm)隨(sui)著壓力(li)的(de)增(zeng)加(jia)而(er)增(zeng)大(da)(圖2-90).這(zhe)(zhe)表(biao)明(ming)在鑄(zhu)(zhu)錠和鑄(zhu)(zhu)型間存在一定的(de)固(gu)(gu)(gu)-固(gu)(gu)(gu)接觸區(qu)(qu)或微間隙(xi)區(qu)(qu)。這(zhe)(zhe)些區(qu)(qu)域的(de)面積隨(sui)著壓力(li)的(de)增(zeng)大(da)而(er)增(zeng)大(da),從(cong)而(er)導(dao)致傳導(dao)換熱的(de)增(zeng)加(jia),這(zhe)(zhe)與鑄(zhu)(zhu)錠表(biao)面粗糙度的(de)實驗結果符合,也進一步說明(ming)了加(jia)壓對界面氣(qi)(qi)隙(xi)尺寸的(de)影響主要(yao)集中在凝(ning)固(gu)(gu)(gu)收縮(suo)階段。


90.jpg


  因此,加(jia)(jia)(jia)壓主要通過抑制由凝(ning)固(gu)(gu)(gu)收(shou)縮導(dao)致(zhi)的(de)氣(qi)隙(xi)形成,增(zeng)(zeng)大固(gu)(gu)(gu)固(gu)(gu)(gu)接觸(chu)或微氣(qi)隙(xi)的(de)界(jie)面面積,強(qiang)化鑄錠(ding)和鑄型界(jie)面完全接觸(chu)狀態,從而增(zeng)(zeng)加(jia)(jia)(jia)界(jie)面氣(qi)體導(dao)熱(re)換(huan)熱(re)系數;此外,加(jia)(jia)(jia)壓下,界(jie)面換(huan)熱(re)系數的(de)增(zeng)(zeng)加(jia)(jia)(jia),加(jia)(jia)(jia)快了鑄錠(ding)固(gu)(gu)(gu)態收(shou)縮,導(dao)致(zhi)凝(ning)固(gu)(gu)(gu)初期由固(gu)(gu)(gu)態收(shou)縮引(yin)起的(de)氣(qi)隙(xi)的(de)尺(chi)寸快速增(zeng)(zeng)大。





聯系方式.jpg