一、氮氣孔(kong)的形成機(ji)理


  在(zai)(zai)21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)(dan)雙相(xiang)(xiang)(xiang)鋼凝(ning)(ning)固(gu)過(guo)程中,氮(dan)(dan)(dan)(dan)氣(qi)孔形(xing)(xing)(xing)成和凝(ning)(ning)固(gu)前沿(yan)處[%N]1iq隨(sui)距離變化的(de)(de)(de)(de)(de)(de)規律如圖(tu)2-55所(suo)(suo)示(shi)(shi)。由于糊狀(zhuang)區內大(da)量枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)網狀(zhuang)結構的(de)(de)(de)(de)(de)(de)形(xing)(xing)(xing)成,液(ye)(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)對流只存在(zai)(zai)于一(yi)次枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)尖端位置附近。且枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)間幾乎無液(ye)(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)流動(dong)。因此,枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)間殘(can)余(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)傳質主要依靠氮(dan)(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)擴(kuo)散行為,且糊狀(zhuang)區內氮(dan)(dan)(dan)(dan)傳質速率(lv)(lv)非常(chang)小(xiao)。初始相(xiang)(xiang)(xiang)貧氮(dan)(dan)(dan)(dan)鐵(tie)素(su)體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)8的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)溶解度和糊狀(zhuang)區的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)傳質速率(lv)(lv)較低,導(dao)致在(zai)(zai)貧氮(dan)(dan)(dan)(dan)鐵(tie)素(su)體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)附近的(de)(de)(de)(de)(de)(de)液(ye)(ye)相(xiang)(xiang)(xiang)中出現(xian)氮(dan)(dan)(dan)(dan)富(fu)(fu)集,且[%N]iq迅速增(zeng)大(da),如圖(tu)2-55(a)所(suo)(suo)示(shi)(shi)。根(gen)據Yang和 Leel70]、Svyazhin 等、Ridolfi 和 Tassal的(de)(de)(de)(de)(de)(de)報(bao)道(dao)可知,當[%N]iq的(de)(de)(de)(de)(de)(de)最大(da)值超(chao)過(guo)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)形(xing)(xing)(xing)成的(de)(de)(de)(de)(de)(de)臨界(jie)氮(dan)(dan)(dan)(dan)質量分數([%N]pore)時,該區域有(you)氣(qi)泡(pao)(pao)形(xing)(xing)(xing)成的(de)(de)(de)(de)(de)(de)可能性,如圖(tu)2-55(b)所(suo)(suo)示(shi)(shi)。在(zai)(zai)后續(xu)的(de)(de)(de)(de)(de)(de)凝(ning)(ning)固(gu)過(guo)程中,隨(sui)著包(bao)晶(jing)(jing)(jing)(jing)反(fan)應的(de)(de)(de)(de)(de)(de)進行,富(fu)(fu)氮(dan)(dan)(dan)(dan)奧氏體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)γ以異質形(xing)(xing)(xing)核的(de)(de)(de)(de)(de)(de)方式在(zai)(zai)鐵(tie)素(su)體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)8枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)的(de)(de)(de)(de)(de)(de)表(biao)面(mian)開(kai)始形(xing)(xing)(xing)核長(chang)大(da),逐漸包(bao)裹(guo)鐵(tie)素(su)體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)表(biao)面(mian),并開(kai)始捕獲殘(can)余(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao),對比(bi)圖(tu)2-51和圖(tu)2-56可知,此時枝(zhi)(zhi)(zhi)(zhi)晶(jing)(jing)(jing)(jing)間殘(can)余(yu)[%N]1ig的(de)(de)(de)(de)(de)(de)增(zeng)長(chang)速率(lv)(lv)減(jian)小(xiao)。對平衡(heng)凝(ning)(ning)固(gu)而言,殘(can)余(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)形(xing)(xing)(xing)成以后,氮(dan)(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)富(fu)(fu)集程度減(jian)弱,[%N]1iq增(zeng)長(chang)速率(lv)(lv)的(de)(de)(de)(de)(de)(de)減(jian)小(xiao)程度明顯;相(xiang)(xiang)(xiang)比(bi)之下,Scheil凝(ning)(ning)固(gu)過(guo)程中,氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)形(xing)(xing)(xing)成以后,殘(can)余(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中氮(dan)(dan)(dan)(dan)富(fu)(fu)集狀(zhuang)態有(you)所(suo)(suo)緩(huan)解,但幅度很小(xiao)。隨(sui)著凝(ning)(ning)固(gu)界(jie)面(mian)的(de)(de)(de)(de)(de)(de)進一(yi)步推移,被捕獲的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)在(zai)(zai)奧氏體(ti)(ti)(ti)(ti)(ti)相(xiang)(xiang)(xiang)表(biao)面(mian)開(kai)始長(chang)大(da),并沿(yan)凝(ning)(ning)固(gu)方向拉長(chang),如圖(tu)2-55(c)所(suo)(suo)示(shi)(shi)。



  氮(dan)(dan)氣孔(kong)沿徑向(xiang)生(sheng)長,生(sheng)長方向(xiang)與(yu)凝固方向(xiang)一致,那么(me)氮(dan)(dan)氣孔(kong)初始形成位(wei)置(zhi)靠(kao)近鑄錠邊部,且氮(dan)(dan)氣泡初始位(wei)置(zhi)邊緣全由奧(ao)氏體(ti)相γ構成(圖(tu)2-57中I區),與(yu)圖(tu)2-55描述相符。隨著氮(dan)(dan)氣孔(kong)被拉(la)長,鐵素體(ti)相和奧(ao)氏體(ti)相以體(ti)積分數比約(yue)為0.92的(de)關系(xi)交(jiao)替在氮(dan)(dan)氣泡周(zhou)圍(wei)形成,直到氮(dan)(dan)氣孔(kong)閉(bi)合。凝固結(jie)束后(hou),氮(dan)(dan)氣孔(kong)的(de)宏(hong)觀(guan)形貌(mao)類似于橢(tuo)圓形,與(yu)Wei等(deng)的(de)研究結(jie)果一致



二、氮微(wei)觀偏析對氮氣孔的(de)影響


  氮的(de)分(fen)配(pei)系(xi)數(shu)較(jiao)小,導(dao)致液(ye)(ye)(ye)相向固相轉變的(de)過(guo)(guo)(guo)(guo)程(cheng)中(zhong),固相會(hui)將多余的(de)氮轉移到殘余液(ye)(ye)(ye)相中(zhong),形(xing)(xing)(xing)成(cheng)氮偏(pian)析(xi)(xi)。在(zai)氮偏(pian)析(xi)(xi)程(cheng)度逐漸加(jia)重的(de)過(guo)(guo)(guo)(guo)程(cheng)中(zhong),當殘余液(ye)(ye)(ye)相中(zhong)氮質量分(fen)數(shu)超(chao)過(guo)(guo)(guo)(guo)其飽和(he)度時,極易形(xing)(xing)(xing)成(cheng)氮氣(qi)(qi)(qi)泡。隨(sui)著(zhu)凝(ning)(ning)固的(de)進行(xing)(xing),若氣(qi)(qi)(qi)泡無法上浮而被捕獲,凝(ning)(ning)固結束(shu)后就會(hui)在(zai)鑄錠內部(bu)形(xing)(xing)(xing)成(cheng)氣(qi)(qi)(qi)孔(kong)(kong)。因此,凝(ning)(ning)固過(guo)(guo)(guo)(guo)程(cheng)中(zhong)氮偏(pian)析(xi)(xi)和(he)溶解度對鑄錠中(zhong)最終氮氣(qi)(qi)(qi)孔(kong)(kong)的(de)形(xing)(xing)(xing)成(cheng)有(you)至關重要的(de)作用。氮氣(qi)(qi)(qi)孔(kong)(kong)多數(shu)情況下與(yu)疏松縮(suo)(suo)孔(kong)(kong)共存,內壁凹(ao)凸不(bu)平(ping)呈現裂(lie)紋狀,且(qie)整個氣(qi)(qi)(qi)孔(kong)(kong)形(xing)(xing)(xing)狀不(bu)規則,如圖2-58所示。此類氣(qi)(qi)(qi)孔(kong)(kong)不(bu)僅與(yu)鋼(gang)液(ye)(ye)(ye)中(zhong)氣(qi)(qi)(qi)泡的(de)形(xing)(xing)(xing)成(cheng)有(you)關,還受(shou)凝(ning)(ning)固收縮(suo)(suo)等(deng)(deng)因素的(de)影(ying)響(xiang),且(qie)多數(shu)分(fen)布(bu)于鑄錠心(xin)部(bu),尤其在(zai)中(zhong)心(xin)等(deng)(deng)軸晶(jing)區(qu)。這(zhe)主要由于中(zhong)心(xin)等(deng)(deng)軸晶(jing)區(qu)內枝晶(jing)生(sheng)長較(jiao)發(fa)達,容易形(xing)(xing)(xing)成(cheng)復雜(za)的(de)網狀結構,從而將液(ye)(ye)(ye)相分(fen)割成(cheng)無數(shu)個獨立的(de)液(ye)(ye)(ye)相區(qu)域,當發(fa)生(sheng)凝(ning)(ning)固收縮(suo)(suo)時,難(nan)以進行(xing)(xing)補縮(suo)(suo),在(zai)形(xing)(xing)(xing)成(cheng)疏松縮(suo)(suo)孔(kong)(kong)的(de)同時,局部(bu)鋼(gang)液(ye)(ye)(ye)靜壓力降低,促(cu)使氮從殘余液(ye)(ye)(ye)相中(zhong)析(xi)(xi)出,從而形(xing)(xing)(xing)成(cheng)了氮氣(qi)(qi)(qi)孔(kong)(kong)和(he)疏松縮(suo)(suo)孔(kong)(kong)共存的(de)宏(hong)觀缺陷。


圖 58.jpg



  平衡凝(ning)固(gu)時,19Cr14Mn0.9N含氮(dan)奧(ao)氏(shi)體(ti)(ti)不(bu)銹(xiu)鋼(gang)殘余液(ye)相中氮(dan)偏析與(yu)體(ti)(ti)系氮(dan)溶(rong)(rong)解度的(de)(de)差值(zhi)如圖(tu)2-59所(suo)示。凝(ning)固(gu)初期(qi)鐵素體(ti)(ti)阱(ferrite trap)的(de)(de)形(xing)(xing)成,導致氮(dan)溶(rong)(rong)解度的(de)(de)降(jiang)低,進而(er)使氮(dan)偏析與(yu)體(ti)(ti)系氮(dan)溶(rong)(rong)解度差值(zhi)呈現出略(lve)微增大的(de)(de)趨勢。但在(zai)后續凝(ning)固(gu)過程中,隨著鐵素體(ti)(ti)阱的(de)(de)消失以(yi)(yi)及(ji)富氮(dan)奧(ao)氏(shi)體(ti)(ti)相的(de)(de)不(bu)斷形(xing)(xing)成,差值(zhi)減小(xiao);在(zai)整個凝(ning)固(gu)過程中差值(zhi)始終較(jiao)小(xiao),且變化幅(fu)度較(jiao)窄。對于19Cr14Mn0.9N 含氮(dan)奧(ao)氏(shi)體(ti)(ti)不(bu)銹(xiu)鋼(gang),液(ye)相中氮(dan)氣泡的(de)(de)形(xing)(xing)成趨勢較(jiao)小(xiao),難以(yi)(yi)在(zai)鑄錠內形(xing)(xing)成獨立內壁光滑的(de)(de)規則氮(dan)氣孔。


  此外,目前有(you)人(ren)對(dui)奧氏(shi)體(ti)(ti)鋼(gang)(gang)凝(ning)固(gu)過程中(zhong)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)的(de)(de)形(xing)(xing)成進行(xing)了大(da)量(liang)研(yan)究,如Yang和(he)Leel901研(yan)究了奧氏(shi)體(ti)(ti)鋼(gang)(gang)16Cr3NixMn(x=9和(he)11)凝(ning)固(gu)過程中(zhong)壓力和(he)初(chu)始(shi)(shi)氮(dan)(dan)(dan)(dan)質量(liang)分數等因素對(dui)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)形(xing)(xing)成的(de)(de)影響(xiang)規律,并建立了相(xiang)應的(de)(de)預(yu)測模型。Ridolfi和(he)Tassal[84]分析(xi)了氮(dan)(dan)(dan)(dan)偏(pian)析(xi)、合(he)金(jin)元素、冷(leng)卻速率(lv)以(yi)(yi)及(ji)枝晶間(jian)距對(dui)奧氏(shi)體(ti)(ti)鋼(gang)(gang)中(zhong)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)的(de)(de)影響(xiang)規律,并揭示了奧氏(shi)體(ti)(ti)鋼(gang)(gang)中(zhong)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)形(xing)(xing)成機理。然而,目前對(dui)于(yu)雙(shuang)相(xiang)鋼(gang)(gang)中(zhong)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)形(xing)(xing)成的(de)(de)研(yan)究較(jiao)少,且主要(yao)集中(zhong)在(zai)合(he)金(jin)元素、鑄造方式、冷(leng)卻速率(lv)等因素對(dui)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)影響(xiang)規律的(de)(de)研(yan)究,鮮有(you)對(dui)雙(shuang)相(xiang)鋼(gang)(gang)中(zhong)氮(dan)(dan)(dan)(dan)氣孔(kong)(kong)形(xing)(xing)成機理的(de)(de)報道(dao)。以(yi)(yi)21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)(dan)雙(shuang)相(xiang)鋼(gang)(gang)為例,氮(dan)(dan)(dan)(dan)偏(pian)析(xi)與(yu)溶解度的(de)(de)差值在(zai)整個(ge)凝(ning)固(gu)過程中(zhong)的(de)(de)變化(hua)趨勢,如圖2-59所示。隨著凝(ning)固(gu)的(de)(de)進行(xing),氮(dan)(dan)(dan)(dan)偏(pian)析(xi)始(shi)(shi)終大(da)于(yu)氮(dan)(dan)(dan)(dan)溶解度,且差值呈現出快速增大(da)的(de)(de)趨勢。因此,在(zai)21.5Cr5Mn1.5Ni0.25N 含氮(dan)(dan)(dan)(dan)雙(shuang)相(xiang)鋼(gang)(gang)凝(ning)固(gu)過程中(zhong),氮(dan)(dan)(dan)(dan)偏(pian)析(xi)嚴重,殘余液相(xiang)內氮(dan)(dan)(dan)(dan)氣泡形(xing)(xing)成趨勢較(jiao)大(da),明顯(xian)高于(yu)19Cr14Mn0.9N含氮(dan)(dan)(dan)(dan)奧氏(shi)體(ti)(ti)不銹鋼(gang)(gang)。


圖 59.jpg

  氮氣(qi)泡(pao)形(xing)成和長大具有重(zhong)要的(de)作用(圖2-60).其中,σ為氣(qi)液界面(mian)(mian)的(de)表面(mian)(mian)張力(li),r為氣(qi)泡(pao)半徑。結合經典(dian)形(xing)核理(li)論,氮氣(qi)泡(pao)在鋼液中穩定(ding)存在的(de)必要條件(jian)為氣(qi)泡(pao)內壓力(li)大于作用于氣(qi)泡(pao)的(de)所有壓力(li)之和,即


圖 60.jpg


  式中,Aso由(you)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)(cheng)中除氮以外其(qi)他合(he)金元素的微觀偏析進(jin)行計(ji)(ji)(ji)算,其(qi)值(zhi)隨著枝晶(jing)間殘余(yu)液(ye)相(xiang)(xiang)中氮溶解度的增(zeng)加(jia)而減小,表(biao)征(zheng)了枝晶(jing)間殘余(yu)液(ye)相(xiang)(xiang)中氮溶解度對(dui)氮氣泡(pao)形(xing)成的影響程(cheng)(cheng)度;Ase表(biao)征(zheng)了枝晶(jing)間氮偏析對(dui)氮氣泡(pao)形(xing)成的影響程(cheng)(cheng)度,可由(you)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)(cheng)中枝晶(jing)間殘余(yu)液(ye)相(xiang)(xiang)中氮偏析計(ji)(ji)(ji)算獲得,其(qi)值(zhi)隨著氮偏析的增(zeng)大而增(zeng)大。此(ci)外,用于計(ji)(ji)(ji)算Aso和Ase時所需的合(he)金元素偏析均(jun)由(you)鋼凝(ning)固(gu)(gu)相(xiang)(xiang)變所致(zhi)。


  氮氣(qi)泡(pao)的形(xing)核和(he)(he)長(chang)大過(guo)(guo)(guo)程(cheng)復雜(za),且(qie)影(ying)響(xiang)(xiang)因(yin)(yin)素眾(zhong)多,包括凝(ning)(ning)固(gu)(gu)(gu)收縮(suo)、冶煉環境以及坩堝材質等(deng)。因(yin)(yin)此,很難采用Pg值精確預測凝(ning)(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)中(zhong)(zhong)氮氣(qi)泡(pao)的形(xing)成和(he)(he)長(chang)大。然而基于Yang等(deng)的實驗研(yan)究[70,77],在評估(gu)凝(ning)(ning)固(gu)(gu)(gu)壓(ya)力(li)、合金成分等(deng)因(yin)(yin)素對(dui)氮氣(qi)泡(pao)形(xing)成的影(ying)響(xiang)(xiang)程(cheng)度(du)時(shi),Pg起關鍵作用。實際凝(ning)(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)介于平衡(heng)凝(ning)(ning)固(gu)(gu)(gu)(固(gu)(gu)(gu)/液相中(zhong)(zhong)溶(rong)質完全(quan)擴(kuo)散)和(he)(he)Scheil凝(ning)(ning)固(gu)(gu)(gu)(固(gu)(gu)(gu)相無溶(rong)質擴(kuo)散,液相中(zhong)(zhong)完全(quan)擴(kuo)散)之間70].因(yin)(yin)此,可分別計算平衡(heng)凝(ning)(ning)固(gu)(gu)(gu)和(he)(he)Scheil凝(ning)(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)中(zhong)(zhong)的Aso、Ase和(he)(he)Pg,闡明實際凝(ning)(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)中(zhong)(zhong)壓(ya)力(li)等(deng)因(yin)(yin)素對(dui)氮氣(qi)泡(pao)形(xing)成的影(ying)響(xiang)(xiang)規律。


  現以(yi)21.5Cr5Mn1.5Ni0.25N含(han)氮雙相(xiang)(xiang)鋼D1鑄錠(ding)為例,對凝(ning)固過程中Aso、Ase和P8的變(bian)化趨勢進行計算。圖2-61描(miao)述了ΔAso(=Asa-Aso,0)和AAse(=Ase-Ase,o)隨固相(xiang)(xiang)質(zhi)量(liang)分(fen)數的變(bian)化趨勢(Aso,0和Asc,0分(fen)別(bie)為D1鑄錠(ding)凝(ning)固時Aso和Ase的初始(shi)值(zhi))。


  在(zai)平衡凝(ning)(ning)固(gu)和(he)(he)Scheil凝(ning)(ning)固(gu)過(guo)程(cheng)(cheng)中(zhong)(zhong),ΔAso的(de)(de)最(zui)小值分(fen)別(bie)為(wei)-0.145和(he)(he)-0.397,與(yu)(yu)(yu)此相(xiang)對(dui)應的(de)(de)ΔAse值最(zui)大,分(fen)別(bie)為(wei)0.68和(he)(he)0.92.在(zai)整個凝(ning)(ning)固(gu)過(guo)程(cheng)(cheng)中(zhong)(zhong),由于ΔAse與(yu)(yu)(yu)ΔAso之和(he)(he)始(shi)終大于零,因而枝晶(jing)間殘余液相(xiang)中(zhong)(zhong)氮(dan)(dan)偏(pian)析對(dui)D1 鑄(zhu)錠(ding)凝(ning)(ning)固(gu)過(guo)程(cheng)(cheng)中(zhong)(zhong)氮(dan)(dan)氣(qi)泡形(xing)成(cheng)的(de)(de)影響大于氮(dan)(dan)溶(rong)解度,起主導作用(yong)。此外(wai)(wai),在(zai)整個凝(ning)(ning)固(gu)過(guo)程(cheng)(cheng)中(zhong)(zhong),P8變化(hua)(hua)趨(qu)勢如圖2-62所示,其變化(hua)(hua)規(gui)律(lv)與(yu)(yu)(yu)Young等。的(de)(de)研究(jiu)結果一致,Pg的(de)(de)最(zui)大值Pg與(yu)(yu)(yu)Ase+Aso的(de)(de)最(zui)大值相(xiang)對(dui)應,且(qie)在(zai)平衡凝(ning)(ning)固(gu)和(he)(he) Scheil 凝(ning)(ning)固(gu)過(guo)程(cheng)(cheng)中(zhong)(zhong)分(fen)別(bie)為(wei)0.63MPa和(he)(he)0.62MPa.此外(wai)(wai),可通過(guo)對(dui)比不(bu)同(tong)鑄(zhu)錠(ding)中(zhong)(zhong)的(de)(de)探討凝(ning)(ning)固(gu)壓力、初始(shi)氮(dan)(dan)質量分(fen)數以(yi)及(ji)合金元素(鉻和(he)(he)錳)等對(dui)液相(xiang)中(zhong)(zhong)氮(dan)(dan)氣(qi)泡形(xing)成(cheng)的(de)(de)影響,進而明晰各因素對(dui)氮(dan)(dan)氣(qi)孔形(xing)成(cheng)的(de)(de)影響規(gui)律(lv)。


圖 61.jpg


聯系方式.jpg