一(yi)、氮氣孔的形成機理
在21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)雙相(xiang)(xiang)(xiang)(xiang)鋼凝固(gu)(gu)過程中(zhong)(zhong)(zhong),氮(dan)(dan)(dan)氣(qi)(qi)孔形成(cheng)(cheng)和(he)凝固(gu)(gu)前沿處[%N]1iq隨距離變化的(de)(de)規(gui)律如圖(tu)2-55所(suo)示(shi)(shi)(shi)。由(you)于(yu)糊狀區內(nei)大(da)(da)量枝(zhi)(zhi)(zhi)晶(jing)(jing)網(wang)狀結(jie)構的(de)(de)形成(cheng)(cheng),液(ye)相(xiang)(xiang)(xiang)(xiang)的(de)(de)對流只存在于(yu)一(yi)次枝(zhi)(zhi)(zhi)晶(jing)(jing)尖端位置附(fu)近(jin)。且(qie)枝(zhi)(zhi)(zhi)晶(jing)(jing)間幾乎無液(ye)相(xiang)(xiang)(xiang)(xiang)的(de)(de)流動。因(yin)此,枝(zhi)(zhi)(zhi)晶(jing)(jing)間殘(can)余液(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)的(de)(de)氮(dan)(dan)(dan)傳(chuan)質(zhi)(zhi)主要(yao)依靠氮(dan)(dan)(dan)的(de)(de)擴(kuo)散(san)行為,且(qie)糊狀區內(nei)氮(dan)(dan)(dan)傳(chuan)質(zhi)(zhi)速(su)率非常小。初(chu)始(shi)(shi)相(xiang)(xiang)(xiang)(xiang)貧氮(dan)(dan)(dan)鐵素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)8的(de)(de)氮(dan)(dan)(dan)溶解度和(he)糊狀區的(de)(de)氮(dan)(dan)(dan)傳(chuan)質(zhi)(zhi)速(su)率較低(di),導致在貧氮(dan)(dan)(dan)鐵素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)枝(zhi)(zhi)(zhi)晶(jing)(jing)附(fu)近(jin)的(de)(de)液(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)出(chu)現氮(dan)(dan)(dan)富集(ji),且(qie)[%N]iq迅速(su)增大(da)(da),如圖(tu)2-55(a)所(suo)示(shi)(shi)(shi)。根據Yang和(he) Leel70]、Svyazhin 等(deng)、Ridolfi 和(he) Tassal的(de)(de)報道可知,當[%N]iq的(de)(de)最大(da)(da)值(zhi)超(chao)過氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)(pao)形成(cheng)(cheng)的(de)(de)臨界(jie)氮(dan)(dan)(dan)質(zhi)(zhi)量分數([%N]pore)時,該區域有(you)氣(qi)(qi)泡(pao)(pao)形成(cheng)(cheng)的(de)(de)可能性,如圖(tu)2-55(b)所(suo)示(shi)(shi)(shi)。在后(hou)續的(de)(de)凝固(gu)(gu)過程中(zhong)(zhong)(zhong),隨著包(bao)晶(jing)(jing)反應的(de)(de)進行,富氮(dan)(dan)(dan)奧氏(shi)體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)γ以異(yi)質(zhi)(zhi)形核的(de)(de)方(fang)式(shi)在鐵素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)8枝(zhi)(zhi)(zhi)晶(jing)(jing)的(de)(de)表(biao)面(mian)(mian)開始(shi)(shi)形核長大(da)(da),逐漸包(bao)裹鐵素體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)枝(zhi)(zhi)(zhi)晶(jing)(jing)表(biao)面(mian)(mian),并開始(shi)(shi)捕獲殘(can)余液(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)的(de)(de)氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)(pao),對比圖(tu)2-51和(he)圖(tu)2-56可知,此時枝(zhi)(zhi)(zhi)晶(jing)(jing)間殘(can)余[%N]1ig的(de)(de)增長速(su)率減(jian)(jian)小。對平衡凝固(gu)(gu)而言(yan),殘(can)余液(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)(pao)形成(cheng)(cheng)以后(hou),氮(dan)(dan)(dan)的(de)(de)富集(ji)程度減(jian)(jian)弱,[%N]1iq增長速(su)率的(de)(de)減(jian)(jian)小程度明顯;相(xiang)(xiang)(xiang)(xiang)比之下,Scheil凝固(gu)(gu)過程中(zhong)(zhong)(zhong),氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)(pao)形成(cheng)(cheng)以后(hou),殘(can)余液(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)富集(ji)狀態(tai)有(you)所(suo)緩解,但幅度很小。隨著凝固(gu)(gu)界(jie)面(mian)(mian)的(de)(de)進一(yi)步(bu)推(tui)移,被捕獲的(de)(de)氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)(pao)在奧氏(shi)體(ti)(ti)(ti)相(xiang)(xiang)(xiang)(xiang)表(biao)面(mian)(mian)開始(shi)(shi)長大(da)(da),并沿凝固(gu)(gu)方(fang)向拉長,如圖(tu)2-55(c)所(suo)示(shi)(shi)(shi)。



氮(dan)(dan)氣(qi)孔沿徑向(xiang)(xiang)生(sheng)長(chang)(chang),生(sheng)長(chang)(chang)方向(xiang)(xiang)與凝(ning)固方向(xiang)(xiang)一致(zhi),那(nei)么氮(dan)(dan)氣(qi)孔初(chu)始(shi)(shi)形成位(wei)置(zhi)(zhi)靠近鑄錠邊部,且氮(dan)(dan)氣(qi)泡初(chu)始(shi)(shi)位(wei)置(zhi)(zhi)邊緣全由奧(ao)氏(shi)體相γ構(gou)成(圖2-57中I區),與圖2-55描述相符。隨(sui)著氮(dan)(dan)氣(qi)孔被拉(la)長(chang)(chang),鐵素體相和奧(ao)氏(shi)體相以體積分數(shu)比約為0.92的(de)(de)關系交(jiao)替在氮(dan)(dan)氣(qi)泡周(zhou)圍形成,直到氮(dan)(dan)氣(qi)孔閉合。凝(ning)固結(jie)束(shu)后(hou),氮(dan)(dan)氣(qi)孔的(de)(de)宏觀形貌類(lei)似于橢(tuo)圓形,與Wei等的(de)(de)研究(jiu)結(jie)果(guo)一致(zhi)
二、氮(dan)微觀偏析(xi)對氮(dan)氣孔的(de)影響
氮(dan)(dan)(dan)(dan)(dan)的(de)(de)(de)(de)分(fen)配(pei)系數(shu)較小(xiao),導致(zhi)液(ye)(ye)相(xiang)向固(gu)(gu)相(xiang)轉(zhuan)變的(de)(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),固(gu)(gu)相(xiang)會(hui)(hui)將(jiang)多余(yu)的(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)(dan)轉(zhuan)移到殘(can)(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong),形成(cheng)(cheng)(cheng)(cheng)氮(dan)(dan)(dan)(dan)(dan)偏析(xi)(xi)。在(zai)氮(dan)(dan)(dan)(dan)(dan)偏析(xi)(xi)程度逐漸加重(zhong)的(de)(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),當(dang)殘(can)(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)(dan)(dan)質(zhi)量分(fen)數(shu)超過其飽和(he)度時(shi),極易形成(cheng)(cheng)(cheng)(cheng)氮(dan)(dan)(dan)(dan)(dan)氣(qi)泡。隨(sui)著凝(ning)(ning)固(gu)(gu)的(de)(de)(de)(de)進(jin)行(xing),若氣(qi)泡無(wu)(wu)法上浮(fu)而被(bei)捕(bu)獲(huo),凝(ning)(ning)固(gu)(gu)結束后就會(hui)(hui)在(zai)鑄(zhu)錠(ding)(ding)內(nei)部(bu)形成(cheng)(cheng)(cheng)(cheng)氣(qi)孔(kong)(kong)(kong)(kong)(kong)。因(yin)此(ci),凝(ning)(ning)固(gu)(gu)過程中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)(dan)(dan)偏析(xi)(xi)和(he)溶解度對鑄(zhu)錠(ding)(ding)中(zhong)(zhong)(zhong)(zhong)最終氮(dan)(dan)(dan)(dan)(dan)氣(qi)孔(kong)(kong)(kong)(kong)(kong)的(de)(de)(de)(de)形成(cheng)(cheng)(cheng)(cheng)有(you)至關重(zhong)要(yao)的(de)(de)(de)(de)作用(yong)。氮(dan)(dan)(dan)(dan)(dan)氣(qi)孔(kong)(kong)(kong)(kong)(kong)多數(shu)情況下與疏(shu)松縮(suo)孔(kong)(kong)(kong)(kong)(kong)共(gong)存(cun),內(nei)壁凹(ao)凸不平(ping)呈(cheng)現裂(lie)紋狀,且整個氣(qi)孔(kong)(kong)(kong)(kong)(kong)形狀不規則,如圖2-58所示。此(ci)類氣(qi)孔(kong)(kong)(kong)(kong)(kong)不僅與鋼液(ye)(ye)中(zhong)(zhong)(zhong)(zhong)氣(qi)泡的(de)(de)(de)(de)形成(cheng)(cheng)(cheng)(cheng)有(you)關,還受(shou)凝(ning)(ning)固(gu)(gu)收縮(suo)等(deng)因(yin)素的(de)(de)(de)(de)影響,且多數(shu)分(fen)布于(yu)鑄(zhu)錠(ding)(ding)心(xin)部(bu),尤(you)其在(zai)中(zhong)(zhong)(zhong)(zhong)心(xin)等(deng)軸晶區。這主(zhu)要(yao)由于(yu)中(zhong)(zhong)(zhong)(zhong)心(xin)等(deng)軸晶區內(nei)枝晶生(sheng)長(chang)較發達,容易形成(cheng)(cheng)(cheng)(cheng)復雜的(de)(de)(de)(de)網狀結構,從而將(jiang)液(ye)(ye)相(xiang)分(fen)割成(cheng)(cheng)(cheng)(cheng)無(wu)(wu)數(shu)個獨立的(de)(de)(de)(de)液(ye)(ye)相(xiang)區域,當(dang)發生(sheng)凝(ning)(ning)固(gu)(gu)收縮(suo)時(shi),難以進(jin)行(xing)補縮(suo),在(zai)形成(cheng)(cheng)(cheng)(cheng)疏(shu)松縮(suo)孔(kong)(kong)(kong)(kong)(kong)的(de)(de)(de)(de)同時(shi),局部(bu)鋼液(ye)(ye)靜壓力降(jiang)低(di),促(cu)使氮(dan)(dan)(dan)(dan)(dan)從殘(can)(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)析(xi)(xi)出(chu),從而形成(cheng)(cheng)(cheng)(cheng)了氮(dan)(dan)(dan)(dan)(dan)氣(qi)孔(kong)(kong)(kong)(kong)(kong)和(he)疏(shu)松縮(suo)孔(kong)(kong)(kong)(kong)(kong)共(gong)存(cun)的(de)(de)(de)(de)宏觀缺陷。

平衡凝(ning)(ning)(ning)(ning)固(gu)時,19Cr14Mn0.9N含氮(dan)奧氏體(ti)不銹鋼殘余(yu)液相(xiang)(xiang)中(zhong)氮(dan)偏(pian)(pian)析與體(ti)系氮(dan)溶解度(du)的(de)差值(zhi)(zhi)如圖2-59所(suo)示。凝(ning)(ning)(ning)(ning)固(gu)初期鐵素(su)體(ti)阱(jing)(ferrite trap)的(de)形成(cheng)(cheng)(cheng),導致氮(dan)溶解度(du)的(de)降低,進而使氮(dan)偏(pian)(pian)析與體(ti)系氮(dan)溶解度(du)差值(zhi)(zhi)呈現出略微(wei)增大的(de)趨勢。但在(zai)后續凝(ning)(ning)(ning)(ning)固(gu)過程中(zhong),隨著鐵素(su)體(ti)阱(jing)的(de)消失以及富(fu)氮(dan)奧氏體(ti)相(xiang)(xiang)的(de)不斷形成(cheng)(cheng)(cheng),差值(zhi)(zhi)減小;在(zai)整(zheng)個(ge)凝(ning)(ning)(ning)(ning)固(gu)過程中(zhong)差值(zhi)(zhi)始(shi)終較(jiao)小,且變(bian)化幅度(du)較(jiao)窄。對于19Cr14Mn0.9N 含氮(dan)奧氏體(ti)不銹鋼,液相(xiang)(xiang)中(zhong)氮(dan)氣泡的(de)形成(cheng)(cheng)(cheng)趨勢較(jiao)小,難以在(zai)鑄(zhu)錠(ding)內(nei)形成(cheng)(cheng)(cheng)獨(du)立內(nei)壁光滑的(de)規則氮(dan)氣孔。
此外(wai),目(mu)前有人對(dui)(dui)奧氏(shi)(shi)體(ti)鋼(gang)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)氮(dan)(dan)氣孔的(de)(de)(de)(de)形(xing)(xing)成進行了(le)(le)大(da)量(liang)研究(jiu),如Yang和(he)Leel901研究(jiu)了(le)(le)奧氏(shi)(shi)體(ti)鋼(gang)16Cr3NixMn(x=9和(he)11)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)壓力和(he)初始氮(dan)(dan)質量(liang)分(fen)數等因素(su)(su)對(dui)(dui)氮(dan)(dan)氣孔形(xing)(xing)成的(de)(de)(de)(de)影(ying)響(xiang)規律(lv),并建立(li)了(le)(le)相(xiang)應的(de)(de)(de)(de)預(yu)測(ce)模(mo)型。Ridolfi和(he)Tassal[84]分(fen)析(xi)了(le)(le)氮(dan)(dan)偏(pian)析(xi)、合金元素(su)(su)、冷卻速率(lv)以及枝晶(jing)間(jian)距對(dui)(dui)奧氏(shi)(shi)體(ti)鋼(gang)中(zhong)氮(dan)(dan)氣孔的(de)(de)(de)(de)影(ying)響(xiang)規律(lv),并揭示(shi)了(le)(le)奧氏(shi)(shi)體(ti)鋼(gang)中(zhong)氮(dan)(dan)氣孔形(xing)(xing)成機理(li)。然而(er),目(mu)前對(dui)(dui)于(yu)雙相(xiang)鋼(gang)中(zhong)氮(dan)(dan)氣孔形(xing)(xing)成的(de)(de)(de)(de)研究(jiu)較(jiao)少(shao),且主(zhu)要(yao)集中(zhong)在合金元素(su)(su)、鑄(zhu)造方(fang)式、冷卻速率(lv)等因素(su)(su)對(dui)(dui)氮(dan)(dan)氣孔影(ying)響(xiang)規律(lv)的(de)(de)(de)(de)研究(jiu),鮮(xian)有對(dui)(dui)雙相(xiang)鋼(gang)中(zhong)氮(dan)(dan)氣孔形(xing)(xing)成機理(li)的(de)(de)(de)(de)報道。以21.5Cr5Mn1.5Ni0.25N含(han)氮(dan)(dan)雙相(xiang)鋼(gang)為例,氮(dan)(dan)偏(pian)析(xi)與溶解度的(de)(de)(de)(de)差(cha)值在整個凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)的(de)(de)(de)(de)變化趨勢,如圖2-59所示(shi)。隨(sui)著凝(ning)固(gu)(gu)的(de)(de)(de)(de)進行,氮(dan)(dan)偏(pian)析(xi)始終大(da)于(yu)氮(dan)(dan)溶解度,且差(cha)值呈現出快速增大(da)的(de)(de)(de)(de)趨勢。因此,在21.5Cr5Mn1.5Ni0.25N 含(han)氮(dan)(dan)雙相(xiang)鋼(gang)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong),氮(dan)(dan)偏(pian)析(xi)嚴重,殘余液相(xiang)內氮(dan)(dan)氣泡形(xing)(xing)成趨勢較(jiao)大(da),明顯高(gao)于(yu)19Cr14Mn0.9N含(han)氮(dan)(dan)奧氏(shi)(shi)體(ti)不(bu)銹鋼(gang)。

氮氣(qi)(qi)泡形成和長大具有重要的作(zuo)用(圖2-60).其中,σ為(wei)氣(qi)(qi)液界(jie)面(mian)的表面(mian)張力,r為(wei)氣(qi)(qi)泡半徑(jing)。結合經典形核理論(lun),氮氣(qi)(qi)泡在(zai)鋼(gang)液中穩定存在(zai)的必要條件為(wei)氣(qi)(qi)泡內壓力大于作(zuo)用于氣(qi)(qi)泡的所有壓力之(zhi)和,即

式中(zhong)(zhong),Aso由凝固過程(cheng)中(zhong)(zhong)除氮(dan)(dan)以外(wai)其他合金(jin)元(yuan)素(su)的(de)(de)微觀偏析(xi)(xi)(xi)(xi)進行計算(suan)(suan),其值隨著枝晶(jing)(jing)間(jian)殘(can)余液(ye)相中(zhong)(zhong)氮(dan)(dan)溶解度的(de)(de)增加而(er)減小,表(biao)征了枝晶(jing)(jing)間(jian)殘(can)余液(ye)相中(zhong)(zhong)氮(dan)(dan)溶解度對(dui)氮(dan)(dan)氣(qi)泡形成的(de)(de)影響(xiang)程(cheng)度;Ase表(biao)征了枝晶(jing)(jing)間(jian)氮(dan)(dan)偏析(xi)(xi)(xi)(xi)對(dui)氮(dan)(dan)氣(qi)泡形成的(de)(de)影響(xiang)程(cheng)度,可由凝固過程(cheng)中(zhong)(zhong)枝晶(jing)(jing)間(jian)殘(can)余液(ye)相中(zhong)(zhong)氮(dan)(dan)偏析(xi)(xi)(xi)(xi)計算(suan)(suan)獲(huo)得,其值隨著氮(dan)(dan)偏析(xi)(xi)(xi)(xi)的(de)(de)增大而(er)增大。此外(wai),用于計算(suan)(suan)Aso和(he)Ase時所需的(de)(de)合金(jin)元(yuan)素(su)偏析(xi)(xi)(xi)(xi)均(jun)由鋼凝固相變(bian)所致(zhi)。
氮氣泡的形(xing)核和長(chang)大過程復雜,且影響(xiang)因(yin)素眾多,包(bao)括凝(ning)(ning)固(gu)收縮、冶煉環境以及坩堝材質等(deng)。因(yin)此(ci),很難采用Pg值精確預測凝(ning)(ning)固(gu)過程中(zhong)氮氣泡的形(xing)成和長(chang)大。然而基于Yang等(deng)的實(shi)驗研究[70,77],在評估凝(ning)(ning)固(gu)壓(ya)力(li)、合金成分等(deng)因(yin)素對氮氣泡形(xing)成的影響(xiang)程度時,Pg起關鍵作用。實(shi)際(ji)凝(ning)(ning)固(gu)過程介(jie)于平衡(heng)凝(ning)(ning)固(gu)(固(gu)/液相(xiang)中(zhong)溶(rong)質完(wan)全擴散)和Scheil凝(ning)(ning)固(gu)(固(gu)相(xiang)無溶(rong)質擴散,液相(xiang)中(zhong)完(wan)全擴散)之間70].因(yin)此(ci),可分別計算平衡(heng)凝(ning)(ning)固(gu)和Scheil凝(ning)(ning)固(gu)過程中(zhong)的Aso、Ase和Pg,闡(chan)明實(shi)際(ji)凝(ning)(ning)固(gu)過程中(zhong)壓(ya)力(li)等(deng)因(yin)素對氮氣泡形(xing)成的影響(xiang)規律。
現以21.5Cr5Mn1.5Ni0.25N含(han)氮雙相(xiang)鋼D1鑄錠(ding)為例,對凝固過程中Aso、Ase和(he)P8的變化趨(qu)勢(shi)進行計(ji)算(suan)。圖(tu)2-61描(miao)述(shu)了ΔAso(=Asa-Aso,0)和(he)AAse(=Ase-Ase,o)隨(sui)固相(xiang)質量分(fen)數的變化趨(qu)勢(shi)(Aso,0和(he)Asc,0分(fen)別為D1鑄錠(ding)凝固時(shi)Aso和(he)Ase的初始值(zhi))。
在平(ping)衡凝(ning)(ning)固(gu)(gu)和(he)(he)(he)Scheil凝(ning)(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong),ΔAso的(de)最小值(zhi)分(fen)(fen)別(bie)為(wei)-0.145和(he)(he)(he)-0.397,與(yu)(yu)此相(xiang)(xiang)對應的(de)ΔAse值(zhi)最大,分(fen)(fen)別(bie)為(wei)0.68和(he)(he)(he)0.92.在整個凝(ning)(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong),由于(yu)ΔAse與(yu)(yu)ΔAso之和(he)(he)(he)始終(zhong)大于(yu)零,因(yin)而(er)枝晶間殘余(yu)液相(xiang)(xiang)中(zhong)(zhong)(zhong)氮(dan)(dan)偏析對D1 鑄錠(ding)凝(ning)(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)泡(pao)形(xing)(xing)成的(de)影(ying)響大于(yu)氮(dan)(dan)溶解度,起主(zhu)導作用。此外,在整個凝(ning)(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong),P8變化趨勢如圖2-62所(suo)示,其變化規律與(yu)(yu)Young等(deng)。的(de)研究結果一致,Pg的(de)最大值(zhi)Pg與(yu)(yu)Ase+Aso的(de)最大值(zhi)相(xiang)(xiang)對應,且(qie)在平(ping)衡凝(ning)(ning)固(gu)(gu)和(he)(he)(he) Scheil 凝(ning)(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong)分(fen)(fen)別(bie)為(wei)0.63MPa和(he)(he)(he)0.62MPa.此外,可通過(guo)(guo)對比不同(tong)鑄錠(ding)中(zhong)(zhong)(zhong)的(de)探討凝(ning)(ning)固(gu)(gu)壓力、初(chu)始氮(dan)(dan)質量分(fen)(fen)數以及合(he)金元素(su)(鉻(ge)和(he)(he)(he)錳(meng))等(deng)對液相(xiang)(xiang)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)泡(pao)形(xing)(xing)成的(de)影(ying)響,進(jin)而(er)明晰各因(yin)素(su)對氮(dan)(dan)氣(qi)孔形(xing)(xing)成的(de)影(ying)響規律。


