現階段腐蝕實驗是探究金屬腐(fu)蝕以及防護的主要手段,通過腐蝕實驗可以探究金屬發生腐蝕的規律及機理、檢查并篩選金屬材料的材質、估算金屬材料的使用壽命、分析金屬材料腐蝕事故的原因以及驗證防腐蝕的效果等。目前探究金屬腐蝕以及防護的方式有多種,如表面分析法、失重法以及電化學法。因為大部分金屬產生的腐蝕都是電化學腐蝕,而腐蝕過程中發生的電化學反應為電化學腐蝕的本質,所以金屬/電解質界面(雙電層)的電化學性質被大量使用于探究金屬腐蝕發生的規律、腐蝕產生的機理等方面。因此,在現有的研究金屬腐蝕與防護的方法中,電化學方法是一種較為重要的方法。腐蝕電化學法能夠按照腐蝕金屬電極特點的不同而分為以下三種類型:①. 電化學動力研究方法,指利用控制極化電流及電極電位來測定腐蝕體系中的熱力學參數;②. 獨用的腐蝕電化學測量跟研究法,指按照金屬電化學腐蝕的獨特性建立相應的電化學測量跟研究方法;③. 通過模擬裝置來探究具有獨特腐蝕形態的電化學測試技術,如模擬SSRT裂紋尖端的裝置、研究縫隙腐蝕的閉塞電池等。這幾種方法中最基礎的為電化學動力法。


  電(dian)(dian)(dian)極電(dian)(dian)(dian)位(wei)以及電(dian)(dian)(dian)流(liu)密(mi)度為腐蝕電(dian)(dian)(dian)化(hua)(hua)學實驗所要獲得(de)的重(zhong)要參數,其中電(dian)(dian)(dian)極電(dian)(dian)(dian)位(wei)表(biao)(biao)示電(dian)(dian)(dian)解(jie)液(ye)-金(jin)屬(shu)界面(mian)(mian)的特性和結(jie)構(gou);電(dian)(dian)(dian)流(liu)密(mi)度表(biao)(biao)示金(jin)屬(shu)材料表(biao)(biao)面(mian)(mian)上單位(wei)面(mian)(mian)積內(nei)電(dian)(dian)(dian)化(hua)(hua)學反應進行的快(kuai)慢。絕大(da)多數電(dian)(dian)(dian)化(hua)(hua)學測試都是(shi)測定(ding)電(dian)(dian)(dian)極電(dian)(dian)(dian)位(wei)跟(gen)電(dian)(dian)(dian)流(liu)密(mi)度這兩(liang)者間的關聯。


 與其他電(dian)(dian)化學(xue)(xue)過程(如(ru)電(dian)(dian)鍍、電(dian)(dian)解及化學(xue)(xue)電(dian)(dian)源(yuan)等)相比,金屬電(dian)(dian)化學(xue)(xue)腐蝕測量(liang)過程的對象是金屬電(dian)(dian)極,該過程有如(ru)下特點:


   1. 金屬發生腐(fu)蝕(shi)的(de)整個(ge)(ge)(ge)腐(fu)蝕(shi)體系(xi)由數(shu)個(ge)(ge)(ge)電極(ji)(ji)反(fan)應耦合而成,同時(shi)在整個(ge)(ge)(ge)電極(ji)(ji)表(biao)面上也(ye)發生著(zhu)數(shu)個(ge)(ge)(ge)電極(ji)(ji)反(fan)應,所以與(yu)只具有(you)一個(ge)(ge)(ge)電極(ji)(ji)反(fan)應的(de)電極(ji)(ji)系(xi)統相比,其在分析和(he)處理(li)腐(fu)蝕(shi)電化學實(shi)驗(yan)結果(guo)上有(you)著(zhu)一定特別之處。


  2. 電(dian)極金(jin)屬材料發生陽極溶解反(fan)應,即腐(fu)蝕金(jin)屬自身參與的(de)反(fan)應是電(dian)極系(xi)統中電(dian)極反(fan)應中的(de)一種。


  3. 測量過程中不可以(yi)只(zhi)探(tan)究(jiu)整個電(dian)極(ji)(ji)(ji)表(biao)面(mian)總(zong)的(de)電(dian)化學行(xing)為,因為電(dian)極(ji)(ji)(ji)表(biao)面(mian)表(biao)現為多(duo)層(ceng)結構,金屬(shu)電(dian)極(ji)(ji)(ji)上有(you)著(zhu)腐(fu)蝕產(chan)物銹層(ceng)、腐(fu)蝕孔及表(biao)面(mian)膜(mo),導致電(dian)極(ji)(ji)(ji)表(biao)面(mian)具有(you)不光滑的(de)特點,容易發生各種形(xing)式的(de)局部(bu)腐(fu)蝕,所以(yi)有(you)必(bi)要發展如微區(qu)電(dian)化學測試之類的(de)能夠表(biao)征電(dian)極(ji)(ji)(ji)表(biao)面(mian)不均(jun)勻性的(de)研究(jiu)方法(fa)。


  4. 腐(fu)蝕金屬的電(dian)(dian)極反應相對于(yu)其他一些(xie)電(dian)(dian)化(hua)學過程而言比較(jiao)緩慢。


 此外,腐(fu)蝕(shi)電(dian)(dian)化(hua)學(xue)測試方法為原位(wei)技術,能夠比較真實(shi)地(di)反應金屬(shu)電(dian)(dian)極表面(mian)發生的(de)(de)實(shi)際腐(fu)蝕(shi),擁有(you)較強的(de)(de)靈敏度、操(cao)作簡單(dan)容易(yi)實(shi)施且實(shi)時性好的(de)(de)優點。電(dian)(dian)化(hua)學(xue)實(shi)驗常用的(de)(de)方法有(you)極化(hua)曲線、交流阻抗及電(dian)(dian)位(wei)掃描等(deng)。


  極(ji)(ji)(ji)化曲線的(de)(de)測量有(you)利于(yu)研(yan)究電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)過程的(de)(de)影響(xiang)因素和機理。眾所(suo)周知,當我們探(tan)究可(ke)逆(ni)(ni)(ni)電(dian)(dian)(dian)(dian)(dian)(dian)池的(de)(de)反(fan)(fan)應時電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)上基本(ben)上是(shi)不(bu)存(cun)在(zai)(zai)電(dian)(dian)(dian)(dian)(dian)(dian)流的(de)(de),各個電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)的(de)(de)反(fan)(fan)應基本(ben)都(dou)在(zai)(zai)平衡狀態下(xia)發(fa)生,所(suo)以該(gai)反(fan)(fan)應為可(ke)逆(ni)(ni)(ni)的(de)(de)。但是(shi)一旦存(cun)在(zai)(zai)電(dian)(dian)(dian)(dian)(dian)(dian)流通過,電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)原本(ben)的(de)(de)平衡狀態就被打破,進而(er)導致電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)電(dian)(dian)(dian)(dian)(dian)(dian)位偏離原本(ben)的(de)(de)平衡電(dian)(dian)(dian)(dian)(dian)(dian)位值,導致電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)反(fan)(fan)應處于(yu)一種不(bu)可(ke)逆(ni)(ni)(ni)的(de)(de)狀態,不(bu)可(ke)逆(ni)(ni)(ni)程度(du)隨著電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)電(dian)(dian)(dian)(dian)(dian)(dian)流密(mi)度(du)的(de)(de)升高而(er)增(zeng)強(qiang),即(ji)所(suo)謂(wei)的(de)(de)電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)極(ji)(ji)(ji)化就是(shi)指由于(yu)電(dian)(dian)(dian)(dian)(dian)(dian)流通過電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)而(er)導致電(dian)(dian)(dian)(dian)(dian)(dian)位偏離平衡值的(de)(de)一種現(xian)狀,極(ji)(ji)(ji)化曲線即(ji)表示電(dian)(dian)(dian)(dian)(dian)(dian)極(ji)(ji)(ji)電(dian)(dian)(dian)(dian)(dian)(dian)位與電(dian)(dian)(dian)(dian)(dian)(dian)流密(mi)度(du)兩者(zhe)間的(de)(de)關系,其測試(shi)有(you)以下(xia)幾種方法。


a. 恒電位法


  恒電(dian)(dian)(dian)位(wei)法(fa)(fa)即將被研究的(de)電(dian)(dian)(dian)極(ji)電(dian)(dian)(dian)位(wei)固定(ding)在不同(tong)的(de)電(dian)(dian)(dian)位(wei)上,然后測(ce)試對應(ying)電(dian)(dian)(dian)位(wei)下(xia)的(de)電(dian)(dian)(dian)極(ji)電(dian)(dian)(dian)流密(mi)(mi)度(du),在實(shi)際(ji)應(ying)用(yong)過程中使用(yong)較(jiao)為普遍的(de)是(shi)靜態(tai)法(fa)(fa)及動(dong)態(tai)法(fa)(fa)。所謂(wei)靜態(tai)法(fa)(fa)是(shi)指控(kong)制電(dian)(dian)(dian)極(ji)電(dian)(dian)(dian)位(wei)為某一個(ge)特定(ding)值(zhi),測(ce)量相對應(ying)電(dian)(dian)(dian)位(wei)下(xia)的(de)電(dian)(dian)(dian)流密(mi)(mi)度(du),且(qie)依次測(ce)定(ding)整(zheng)個(ge)電(dian)(dian)(dian)極(ji)電(dian)(dian)(dian)位(wei)下(xia)的(de)電(dian)(dian)(dian)流密(mi)(mi)度(du),從而得到(dao)整(zheng)個(ge)極(ji)化(hua)(hua)曲(qu)線(xian);其次動(dong)態(tai)法(fa)(fa)指控(kong)制電(dian)(dian)(dian)極(ji)電(dian)(dian)(dian)位(wei)按照較(jiao)為緩慢的(de)速(su)度(du)不停地變化(hua)(hua),并且(qie)測(ce)量相對應(ying)電(dian)(dian)(dian)位(wei)下(xia)的(de)電(dian)(dian)(dian)流值(zhi),瞬時(shi)電(dian)(dian)(dian)流與其相對應(ying)的(de)電(dian)(dian)(dian)位(wei)關系(xi)曲(qu)線(xian)即為極(ji)化(hua)(hua)曲(qu)線(xian)。這(zhe)兩種方(fang)法(fa)(fa)中較(jiao)為廣(guang)泛(fan)使用(yong)的(de)是(shi)動(dong)態(tai)法(fa)(fa)測(ce)定(ding)極(ji)化(hua)(hua)曲(qu)線(xian),該(gai)方(fang)法(fa)(fa)的(de)優點(dian)在于(yu)(yu)掃描速(su)度(du)可以控(kong)制、可以自動(dong)測(ce)量并繪制極(ji)化(hua)(hua)曲(qu)線(xian),其測(ce)量的(de)結果有較(jiao)高的(de)重現(xian)性,對于(yu)(yu)那些需(xu)要(yao)比(bi)較(jiao)的(de)實(shi)驗(yan)該(gai)方(fang)法(fa)(fa)為首選。


b. 恒電(dian)流法


  恒(heng)電(dian)(dian)(dian)流(liu)法是(shi)指固定(ding)電(dian)(dian)(dian)極(ji)(ji)(ji)體(ti)系的電(dian)(dian)(dian)流(liu)密(mi)度為某(mou)一特(te)定(ding)值,測(ce)定(ding)跟電(dian)(dian)(dian)流(liu)密(mi)度相對應的電(dian)(dian)(dian)極(ji)(ji)(ji)電(dian)(dian)(dian)位。恒(heng)電(dian)(dian)(dian)流(liu)法測(ce)量極(ji)(ji)(ji)化曲線在(zai)測(ce)定(ding)過(guo)程中電(dian)(dian)(dian)極(ji)(ji)(ji)很難達到一個穩定(ding)的狀態,所(suo)以在(zai)實際(ji)測(ce)量過(guo)程中一般當電(dian)(dian)(dian)位接近穩定(ding)的時候即可以讀值。


  典型的動電位極化曲線如圖5.1所示。圖中Eb為金屬材料的點蝕電位,Ep為保護電位。同樣的實驗狀態下點蝕電位(Eb)值越大則意味著金屬產生點腐蝕的傾向越低;當幾種金屬材料的點蝕電位值相當,只有將點蝕電位和保護電位綜合考慮才能評價金屬的耐蝕能力,(Eb-Ep)差值越低表明材料鈍化膜修復能力越強,耐孔蝕性能越優,因而保護電位(Ep)和點蝕電位(Eb)是被用來表示金屬耐孔腐蝕能力大小的基本參數。在E>Eb的條件下,點蝕必然會發生,不但原來具有的蝕孔會長大而且還會產生新的蝕孔;在E<Ep的情況下不會發生點蝕,原來的孔蝕不會長大而且新的蝕孔也不會產生;在Ep<E<Eb條件下,孔蝕存在,原有的蝕孔會接著擴展并生長,但是新蝕孔不會產生。


1.jpg


  電化學阻抗譜(Electrochemical Impedance Spectroscopy,EIS),在早期的電化學文獻中電化學阻抗又被稱為交流阻抗(Alternating Current impedance,AC im-pedance).電化學阻抗原先被用于電學中來探究線性電路網絡頻率響應特征,后來被用在電極上,進而成為電化學的研究方式。電化學阻抗譜的原理是指向電化學體系施予一頻率各異的小振幅交流電動勢,測定正弦波頻率(ω)的改變對該電動勢與電流信號比值產生的影響,即測定阻抗隨著正弦波頻率(ω)的變化,也可以通過測定阻抗的相位角Φ隨ω的變化來分析電極材料、腐蝕機理、導電材料、電極過程的動力學等方面的機理。采用小振幅的電信號既能夠防止給系統帶來較大的影響,同時又能夠讓擾動跟響應體系之間表現為近似線性的關系,進而讓測量的結果數學處理更容易。此外,電化學阻抗譜是通過測量過程中獲得的頻率比較寬的阻抗譜探究電極的,所以相對于另外一些電化學法其能夠得到電極界面結構和動力學信息。例如:通過阻抗譜形狀能夠探究金屬電極發生腐蝕的機理;探究金屬表面上保護膜的阻抗特征;對腐蝕金屬進行電化學阻抗測量可以獲得極化電阻(Rp);對腐蝕的金屬材料進行電化學阻抗譜測量,能夠了解動力學參數進而來研究金屬材料抗腐蝕能力的強弱等。因此,電化學阻抗譜成為近年來探究金屬發生腐蝕與采取相應防護措施的重要方式。


  電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)阻(zu)(zu)抗(kang)(EIS)測試把電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)系統作(zuo)為(wei)一(yi)個(ge)等效(xiao)電(dian)(dian)(dian)(dian)路(lu)(lu)(lu),交流(liu)(liu)阻(zu)(zu)抗(kang)實驗的(de)基本等效(xiao)電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)如圖5.2所示。該(gai)電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)的(de)組(zu)(zu)成元件有(you)電(dian)(dian)(dian)(dian)阻(zu)(zu)(R:金屬材料對電(dian)(dian)(dian)(dian)流(liu)(liu)的(de)阻(zu)(zu)攔功能(neng))、電(dian)(dian)(dian)(dian)感(L:于電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)中(zhong)對交流(liu)(liu)電(dian)(dian)(dian)(dian)的(de)阻(zu)(zu)礙(ai)功能(neng))及(ji)電(dian)(dian)(dian)(dian)容(rong)(C:電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)中(zhong)對交流(liu)(liu)電(dian)(dian)(dian)(dian)所引起(qi)的(de)阻(zu)(zu)礙(ai)作(zuo)用)等,這些(xie)元件按照串聯或者并聯的(de)方(fang)式組(zu)(zu)合起(qi)來(lai)形成一(yi)個(ge)等效(xiao)電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)。測量電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)阻(zu)(zu)抗(kang)能(neng)夠確定(ding)等效(xiao)電(dian)(dian)(dian)(dian)路(lu)(lu)(lu)的(de)組(zu)(zu)成方(fang)式及(ji)各組(zu)(zu)成元件的(de)值、通過(guo)這些(xie)元件的(de)電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)含義(yi)就可(ke)以(yi)分析電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)電(dian)(dian)(dian)(dian)極過(guo)程(cheng)的(de)性質(zhi)和電(dian)(dian)(dian)(dian)化學(xue)(xue)(xue)(xue)系統的(de)結(jie)構。



2.jpg